Cargando…

Microstructure Evolution and Strengthening Mechanism of Galvanized Steel/Mg Alloy Joint Obtained by Ultrasonic Vibration-Assisted Welding Process

A novel ultrasonic vibration-assisted welding (UVAW) process was used to achieve reliable joining of galvanized steel and Mg alloy. The effects of the UVAW technique on the microstructure and mechanical properties of galvanized steel/Mg alloy weldment were studied in detail. The introduction of ultr...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Fangzhou, Liu, Bing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8037006/
https://www.ncbi.nlm.nih.gov/pubmed/33805373
http://dx.doi.org/10.3390/ma14071674
Descripción
Sumario:A novel ultrasonic vibration-assisted welding (UVAW) process was used to achieve reliable joining of galvanized steel and Mg alloy. The effects of the UVAW technique on the microstructure and mechanical properties of galvanized steel/Mg alloy weldment were studied in detail. The introduction of ultrasonic vibration can ameliorate the wetting of welds and eliminate porosity defects. A refined microstructure of the fusion welding zone with an average grain size of 39 ± 1.7 µm was obtained and attributed to cavitation and acoustic streaming caused by the UVAW process. The grain refinement led to an increase in the microhardness and joining strength of the galvanized steel/Mg alloy weldment. Under the ultrasonic power of 0.9 kW and a current of 65 A, the maximum joining strength of the ultrasound-treated galvanized steel/Mg alloy joint was 251 ± 4.1 MPa, which was a 14.6% increase over the joint without ultrasonic treatment.