Cargando…

The Prediction of Body Mass Index from Negative Affectivity through Machine Learning: A Confirmatory Study

This study investigates on the relationship between affect-related psychological variables and Body Mass Index (BMI). We have utilized a novel method based on machine learning (ML) algorithms that forecast unobserved BMI values based on psychological variables, like depression, as predictors. We hav...

Descripción completa

Detalles Bibliográficos
Autores principales: Delnevo, Giovanni, Mancini, Giacomo, Roccetti, Marco, Salomoni, Paola, Trombini, Elena, Andrei, Federica
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8037317/
https://www.ncbi.nlm.nih.gov/pubmed/33805257
http://dx.doi.org/10.3390/s21072361
Descripción
Sumario:This study investigates on the relationship between affect-related psychological variables and Body Mass Index (BMI). We have utilized a novel method based on machine learning (ML) algorithms that forecast unobserved BMI values based on psychological variables, like depression, as predictors. We have employed various machine learning algorithms, including gradient boosting and random forest, with psychological variables relative to 221 subjects to predict both the BMI values and the BMI status (normal, overweight, and obese) of those subjects. We have found that the psychological variables in use allow one to predict both the BMI values (with a mean absolute error of 5.27–5.50) and the BMI status with an accuracy of over 80% (metric: F1-score). Further, our study has also confirmed the particular efficacy of psychological variables of negative type, such as depression for example, compared to positive ones, to achieve excellent predictive BMI values.