Cargando…
Hyperspectral Classification of Blood-Like Substances Using Machine Learning Methods Combined with Genetic Algorithms in Transductive and Inductive Scenarios
This study is focused on applying genetic algorithms (GAs) to model and band selection in hyperspectral image classification. We use a forensic-inspired data set of seven hyperspectral images with blood and five visually similar substances to test GA-optimised classifiers in two scenarios: when the...
Autores principales: | Pałka, Filip, Książek, Wojciech, Pławiak, Paweł, Romaszewski, Michał, Książek, Kamil |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8037346/ https://www.ncbi.nlm.nih.gov/pubmed/33805937 http://dx.doi.org/10.3390/s21072293 |
Ejemplares similares
-
Blood Stain Classification with Hyperspectral Imaging and Deep Neural Networks
por: Książek, Kamil, et al.
Publicado: (2020) -
Transmission Quality Classification with Use of Fusion of Neural Network and Genetic Algorithm in Pay&Require Multi-Agent Managed Network
por: Żelasko, Dariusz, et al.
Publicado: (2021) -
Nondestructive Classification of Soybean Seed Varieties by Hyperspectral Imaging and Ensemble Machine Learning Algorithms
por: Wei, Yanlin, et al.
Publicado: (2020) -
Nondestructive Classification of Maize Moldy Seeds by Hyperspectral Imaging and Optimal Machine Learning Algorithms
por: Hu, Yating, et al.
Publicado: (2022) -
Hyperspectral Image Classification Based on Improved Rotation Forest Algorithm
por: Lv, Fei, et al.
Publicado: (2018)