Cargando…

Smart Anomaly Detection and Prediction for Assembly Process Maintenance in Compliance with Industry 4.0

One of the big problems of today’s manufacturing companies is the risks of the assembly line unexpected cessation. Although planned and well-performed maintenance will significantly reduce many of these risks, there are still anomalies that cannot be resolved within standard maintenance approaches....

Descripción completa

Detalles Bibliográficos
Autores principales: Tanuska, Pavol, Spendla, Lukas, Kebisek, Michal, Duris, Rastislav, Stremy, Maximilian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8037397/
https://www.ncbi.nlm.nih.gov/pubmed/33805557
http://dx.doi.org/10.3390/s21072376
Descripción
Sumario:One of the big problems of today’s manufacturing companies is the risks of the assembly line unexpected cessation. Although planned and well-performed maintenance will significantly reduce many of these risks, there are still anomalies that cannot be resolved within standard maintenance approaches. In our paper, we aim to solve the problem of accidental carrier bearings damage on an assembly conveyor. Sometimes the bearing of one of the carrier wheels is seized, causing the conveyor, and of course the whole assembly process, to halt. Applying standard approaches in this case does not bring any visible improvement. Therefore, it is necessary to propose and implement a unique approach that incorporates Industrial Internet of Things (IIoT) devices, neural networks, and sound analysis, for the purpose of predicting anomalies. This proposal uses the mentioned approaches in such a way that the gradual integration eliminates the disadvantages of individual approaches while highlighting and preserving the benefits of our solution. As a result, we have created and deployed a smart system that is able to detect and predict arising anomalies and achieve significant reduction in unexpected production cessation.