Cargando…
StyHighNet: Semi-Supervised Learning Height Estimation from a Single Aerial Image via Unified Style Transferring
Recovering height information from a single aerial image is a key problem in the fields of computer vision and remote sensing. At present, supervised learning methods have achieved impressive results, but, due to domain bias, the trained model cannot be directly applied to a new scene. In this paper...
Autores principales: | Gao, Qian, Shen, Xukun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8037440/ https://www.ncbi.nlm.nih.gov/pubmed/33804973 http://dx.doi.org/10.3390/s21072272 |
Ejemplares similares
-
Semi-supervised adaptive-height snipping of the hierarchical clustering tree
por: Obulkasim, Askar, et al.
Publicado: (2015) -
A unified view of density-based methods for
semi-supervised clustering and classification
por: Castro Gertrudes, Jadson, et al.
Publicado: (2020) -
Post Disaster Damage Assessment Using Ultra-High-Resolution Aerial Imagery with Semi-Supervised Transformers
por: Singh, Deepank Kumar, et al.
Publicado: (2023) -
Semi-Supervised Generative Adversarial Nets with Multiple Generators for SAR Image Recognition
por: Gao, Fei, et al.
Publicado: (2018) -
Fault Diagnosis for Power Transformers through Semi-Supervised Transfer Learning
por: Mao, Weiyun, et al.
Publicado: (2022)