Cargando…
Design and Properties Analysis of Novel Modified 1-3 Piezoelectric Composite
With the increasing demand for energy exchangers in underwater acoustic equipment, a modified 1-3 piezoelectric composite material is fabricated based on three-component phases. The new material outperforms the traditional two-phase 1-3 structure. Flexible silicone rubber polymer strengthened the pi...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8037501/ https://www.ncbi.nlm.nih.gov/pubmed/33918159 http://dx.doi.org/10.3390/ma14071749 |
Sumario: | With the increasing demand for energy exchangers in underwater acoustic equipment, a modified 1-3 piezoelectric composite material is fabricated based on three-component phases. The new material outperforms the traditional two-phase 1-3 structure. Flexible silicone rubber polymer strengthened the piezoelectric composite and the properties of modified 1-3 piezoelectric composite have been tested by method of finite element simulation and experiment, respectively. This modified material has a high electromechanical coupling coefficient; the maximum can reach 0.684 and −3 dB bandwidth is superior to the two-phase 1-3 type. At the same time, the modified phase 1-3 type structure has an excellent decoupling effect. Silicone rubber can reduce the negative coupling vibration of epoxy resin, the vibration model simplification of piezoelectric composite, and the result of the experiment and simulation has good consistency. |
---|