Cargando…
Machine Learning Reduced Gene/Non-Coding RNA Features That Classify Schizophrenia Patients Accurately and Highlight Insightful Gene Clusters
RNA-seq has been a powerful method to detect the differentially expressed genes/long non-coding RNAs (lncRNAs) in schizophrenia (SCZ) patients; however, due to overfitting problems differentially expressed targets (DETs) cannot be used properly as biomarkers. This study used machine learning to redu...
Autores principales: | Liu, Yichuan, Qu, Hui-Qi, Chang, Xiao, Tian, Lifeng, Qu, Jingchun, Glessner, Joseph, Sleiman, Patrick M. A., Hakonarson, Hakon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8037538/ https://www.ncbi.nlm.nih.gov/pubmed/33805976 http://dx.doi.org/10.3390/ijms22073364 |
Ejemplares similares
-
Expansion of Schizophrenia Gene Network Knowledge Using Machine Learning Selected Signals From Dorsolateral Prefrontal Cortex and Amygdala RNA-seq Data
por: Liu, Yichuan, et al.
Publicado: (2022) -
Rare Recurrent Variants in Noncoding Regions Impact Attention-Deficit Hyperactivity Disorder (ADHD) Gene Networks in Children of both African American and European American Ancestry
por: Liu, Yichuan, et al.
Publicado: (2021) -
Burden of rare coding variants reveals genetic heterogeneity between obese and non-obese asthma patients in the African American population
por: Liu, Yichuan, et al.
Publicado: (2022) -
Non-coding structural variation differentially impacts attention-deficit hyperactivity disorder (ADHD) gene networks in African American vs Caucasian children
por: Liu, Yichuan, et al.
Publicado: (2020) -
Expression Pattern of the SARS-CoV-2 Entry Genes ACE2 and TMPRSS2 in the Respiratory Tract
por: Liu, Yichuan, et al.
Publicado: (2020)