Cargando…
Building a Twitter Sentiment Analysis System with Recurrent Neural Networks
This paper presents a sentiment analysis solution on tweets using Recurrent Neural Networks (RNNs). The method is can classifying tweets with an 80.74% accuracy rate, considering a binary task, after experimenting with 20 different design approaches. The solution integrates an attention mechanism ai...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8037672/ https://www.ncbi.nlm.nih.gov/pubmed/33804900 http://dx.doi.org/10.3390/s21072266 |
Sumario: | This paper presents a sentiment analysis solution on tweets using Recurrent Neural Networks (RNNs). The method is can classifying tweets with an 80.74% accuracy rate, considering a binary task, after experimenting with 20 different design approaches. The solution integrates an attention mechanism aiming to enhance the network, with a two-way localization system: at memory cell level and at network level. We present an in-depth literature review for Twitter sentiment analysis and the building blocks that grounded the design decisions of our solution, employed as a core classification component within a sentiment indicator of the SynergyCrowds platform. |
---|