Cargando…
Calibration of Visible Light Positioning Systems with a Mobile Robot
Most indoor positioning systems require calibration before use. Fingerprinting requires the construction of a signal strength map, while ranging systems need the coordinates of the beacons. Calibration approaches exist for positioning systems that use Wi-Fi, radio frequency identification or ultrawi...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8037878/ https://www.ncbi.nlm.nih.gov/pubmed/33808332 http://dx.doi.org/10.3390/s21072394 |
_version_ | 1783677246360256512 |
---|---|
author | Amsters, Robin Demeester, Eric Stevens, Nobby Slaets, Peter |
author_facet | Amsters, Robin Demeester, Eric Stevens, Nobby Slaets, Peter |
author_sort | Amsters, Robin |
collection | PubMed |
description | Most indoor positioning systems require calibration before use. Fingerprinting requires the construction of a signal strength map, while ranging systems need the coordinates of the beacons. Calibration approaches exist for positioning systems that use Wi-Fi, radio frequency identification or ultrawideband. However, few examples are available for the calibration of visible light positioning systems. Most works focused on obtaining the channel model parameters or performed a calibration based on known receiver locations. In this paper, we describe an improved procedure that uses a mobile robot for data collection and is able to obtain a map of the environment with the beacon locations and their identities. Compared to previous work, the error is almost halved. Additionally, this approach does not require prior knowledge of the number of light sources or the receiver location. We demonstrate that the system performs well under a wide range of lighting conditions and investigate the influence of parameters such as the robot trajectory, camera resolution and field of view. Finally, we also close the loop between calibration and positioning and show that our approach has similar or better accuracy than manual calibration. |
format | Online Article Text |
id | pubmed-8037878 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-80378782021-04-12 Calibration of Visible Light Positioning Systems with a Mobile Robot Amsters, Robin Demeester, Eric Stevens, Nobby Slaets, Peter Sensors (Basel) Article Most indoor positioning systems require calibration before use. Fingerprinting requires the construction of a signal strength map, while ranging systems need the coordinates of the beacons. Calibration approaches exist for positioning systems that use Wi-Fi, radio frequency identification or ultrawideband. However, few examples are available for the calibration of visible light positioning systems. Most works focused on obtaining the channel model parameters or performed a calibration based on known receiver locations. In this paper, we describe an improved procedure that uses a mobile robot for data collection and is able to obtain a map of the environment with the beacon locations and their identities. Compared to previous work, the error is almost halved. Additionally, this approach does not require prior knowledge of the number of light sources or the receiver location. We demonstrate that the system performs well under a wide range of lighting conditions and investigate the influence of parameters such as the robot trajectory, camera resolution and field of view. Finally, we also close the loop between calibration and positioning and show that our approach has similar or better accuracy than manual calibration. MDPI 2021-03-30 /pmc/articles/PMC8037878/ /pubmed/33808332 http://dx.doi.org/10.3390/s21072394 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Amsters, Robin Demeester, Eric Stevens, Nobby Slaets, Peter Calibration of Visible Light Positioning Systems with a Mobile Robot |
title | Calibration of Visible Light Positioning Systems with a Mobile Robot |
title_full | Calibration of Visible Light Positioning Systems with a Mobile Robot |
title_fullStr | Calibration of Visible Light Positioning Systems with a Mobile Robot |
title_full_unstemmed | Calibration of Visible Light Positioning Systems with a Mobile Robot |
title_short | Calibration of Visible Light Positioning Systems with a Mobile Robot |
title_sort | calibration of visible light positioning systems with a mobile robot |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8037878/ https://www.ncbi.nlm.nih.gov/pubmed/33808332 http://dx.doi.org/10.3390/s21072394 |
work_keys_str_mv | AT amstersrobin calibrationofvisiblelightpositioningsystemswithamobilerobot AT demeestereric calibrationofvisiblelightpositioningsystemswithamobilerobot AT stevensnobby calibrationofvisiblelightpositioningsystemswithamobilerobot AT slaetspeter calibrationofvisiblelightpositioningsystemswithamobilerobot |