Cargando…
Assessing the In Vitro Inhibitory Effects on Key Enzymes Linked to Type-2 Diabetes and Obesity and Protein Glycation by Phenolic Compounds of Lauraceae Plant Species Endemic to the Laurisilva Forest
Methanolic leaf extracts of four Lauraceae species endemic to Laurisilva forest (Apollonias barbujana, Laurus novocanariensis, Ocotea foetens and Persea indica) were investigated for the first time for their potential to inhibit key enzymes linked to type-2 diabetes (α-amylase, α-glucosidase, aldose...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8037948/ https://www.ncbi.nlm.nih.gov/pubmed/33916292 http://dx.doi.org/10.3390/molecules26072023 |
_version_ | 1783677262049050624 |
---|---|
author | Spínola, Vítor Castilho, Paula C. |
author_facet | Spínola, Vítor Castilho, Paula C. |
author_sort | Spínola, Vítor |
collection | PubMed |
description | Methanolic leaf extracts of four Lauraceae species endemic to Laurisilva forest (Apollonias barbujana, Laurus novocanariensis, Ocotea foetens and Persea indica) were investigated for the first time for their potential to inhibit key enzymes linked to type-2 diabetes (α-amylase, α-glucosidase, aldose reductase) and obesity (pancreatic lipase), and protein glycation. Lauraceae extracts revealed significant inhibitory activities in all assays, altough with different ability between species. In general, P. indica showed the most promissing results. In the protein glycation assay, all analysed extracts displayed a stronger effect than a reference compound: aminoguanidine (AMG). The in vitro anti-diabetic, anti-obesity and anti-glycation activities of analysed extracts showed correlation with their flavonols and flavan-3-ols (in particular, proanthocyanins) contents. These Lauraceae species have the capacity to assist in adjuvant therapy of type-2 diabetes and associated complications, through modulation of the activity of key metabolic enzymes and prevention of advanced glycation end-products (AGEs) formation. |
format | Online Article Text |
id | pubmed-8037948 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-80379482021-04-12 Assessing the In Vitro Inhibitory Effects on Key Enzymes Linked to Type-2 Diabetes and Obesity and Protein Glycation by Phenolic Compounds of Lauraceae Plant Species Endemic to the Laurisilva Forest Spínola, Vítor Castilho, Paula C. Molecules Article Methanolic leaf extracts of four Lauraceae species endemic to Laurisilva forest (Apollonias barbujana, Laurus novocanariensis, Ocotea foetens and Persea indica) were investigated for the first time for their potential to inhibit key enzymes linked to type-2 diabetes (α-amylase, α-glucosidase, aldose reductase) and obesity (pancreatic lipase), and protein glycation. Lauraceae extracts revealed significant inhibitory activities in all assays, altough with different ability between species. In general, P. indica showed the most promissing results. In the protein glycation assay, all analysed extracts displayed a stronger effect than a reference compound: aminoguanidine (AMG). The in vitro anti-diabetic, anti-obesity and anti-glycation activities of analysed extracts showed correlation with their flavonols and flavan-3-ols (in particular, proanthocyanins) contents. These Lauraceae species have the capacity to assist in adjuvant therapy of type-2 diabetes and associated complications, through modulation of the activity of key metabolic enzymes and prevention of advanced glycation end-products (AGEs) formation. MDPI 2021-04-01 /pmc/articles/PMC8037948/ /pubmed/33916292 http://dx.doi.org/10.3390/molecules26072023 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Spínola, Vítor Castilho, Paula C. Assessing the In Vitro Inhibitory Effects on Key Enzymes Linked to Type-2 Diabetes and Obesity and Protein Glycation by Phenolic Compounds of Lauraceae Plant Species Endemic to the Laurisilva Forest |
title | Assessing the In Vitro Inhibitory Effects on Key Enzymes Linked to Type-2 Diabetes and Obesity and Protein Glycation by Phenolic Compounds of Lauraceae Plant Species Endemic to the Laurisilva Forest |
title_full | Assessing the In Vitro Inhibitory Effects on Key Enzymes Linked to Type-2 Diabetes and Obesity and Protein Glycation by Phenolic Compounds of Lauraceae Plant Species Endemic to the Laurisilva Forest |
title_fullStr | Assessing the In Vitro Inhibitory Effects on Key Enzymes Linked to Type-2 Diabetes and Obesity and Protein Glycation by Phenolic Compounds of Lauraceae Plant Species Endemic to the Laurisilva Forest |
title_full_unstemmed | Assessing the In Vitro Inhibitory Effects on Key Enzymes Linked to Type-2 Diabetes and Obesity and Protein Glycation by Phenolic Compounds of Lauraceae Plant Species Endemic to the Laurisilva Forest |
title_short | Assessing the In Vitro Inhibitory Effects on Key Enzymes Linked to Type-2 Diabetes and Obesity and Protein Glycation by Phenolic Compounds of Lauraceae Plant Species Endemic to the Laurisilva Forest |
title_sort | assessing the in vitro inhibitory effects on key enzymes linked to type-2 diabetes and obesity and protein glycation by phenolic compounds of lauraceae plant species endemic to the laurisilva forest |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8037948/ https://www.ncbi.nlm.nih.gov/pubmed/33916292 http://dx.doi.org/10.3390/molecules26072023 |
work_keys_str_mv | AT spinolavitor assessingtheinvitroinhibitoryeffectsonkeyenzymeslinkedtotype2diabetesandobesityandproteinglycationbyphenoliccompoundsoflauraceaeplantspeciesendemictothelaurisilvaforest AT castilhopaulac assessingtheinvitroinhibitoryeffectsonkeyenzymeslinkedtotype2diabetesandobesityandproteinglycationbyphenoliccompoundsoflauraceaeplantspeciesendemictothelaurisilvaforest |