Cargando…

Seepage Time Soft Sensor Model of Nonwoven Fabric Based on the Extreme Learning Machine Integrating Monte Carlo

Nonwoven fiber materials are materials with multifunctional purposes, and are widely used to make masks for preventing the new Coronavirus Disease 2019. Because of the complexity and particularity of their structure, it becomes difficult to model the penetration and flow characteristics of liquid in...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Jing, Fan, Yiqiang, Zhang, Lulu, Xu, Chi, Dong, Xiaobin, Liu, Luyao, Zhang, Zhongping, Qiu, Xianbo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8037967/
https://www.ncbi.nlm.nih.gov/pubmed/33805559
http://dx.doi.org/10.3390/s21072377
Descripción
Sumario:Nonwoven fiber materials are materials with multifunctional purposes, and are widely used to make masks for preventing the new Coronavirus Disease 2019. Because of the complexity and particularity of their structure, it becomes difficult to model the penetration and flow characteristics of liquid in nonwoven fiber materials. In this paper, a novel seepage time soft sensor model of nonwoven fabric, based on Monte Carlo (MC), integrating extreme learning machine (ELM) (MCELM) is proposed. The Monte Carlo method is used to expand data samples. Then, an ELM method is used to establish the prediction model of the dyeing time of the nonwoven fiber material overlaps with the porous medium, as well as the insertion degree and height of the different quantity of hides. Compared with the back propagation (BP) neural network and radial basis function (RBF) neural network, the results show that the prediction model based on the MCELM method has significant power in terms of accuracy and prediction speed, which is conducive to the precise and rapid manufacture of nonwoven fiber materials in practical applications between liquid seepage characteristics and structural characteristics of porous media. Furthermore, the relationship between the proposed models has certain value for predicting the behavior and use of nonwoven fiber materials with different structural characteristics and related research processes.