Cargando…
LiDAR-Based Glass Detection for Improved Occupancy Grid Mapping
Creating an accurate awareness of the environment using laser scanners is a major challenge in robotics and auto industries. LiDAR (light detection and ranging) is a powerful laser scanner that provides a detailed map of the environment. However, efficient and accurate mapping of the environment is...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8038001/ https://www.ncbi.nlm.nih.gov/pubmed/33804883 http://dx.doi.org/10.3390/s21072263 |
Sumario: | Creating an accurate awareness of the environment using laser scanners is a major challenge in robotics and auto industries. LiDAR (light detection and ranging) is a powerful laser scanner that provides a detailed map of the environment. However, efficient and accurate mapping of the environment is yet to be obtained, as most modern environments contain glass, which is invisible to LiDAR. In this paper, a method to effectively detect and localise glass using LiDAR sensors is proposed. This new approach is based on the variation of range measurements between neighbouring point clouds, using a two-step filter. The first filter examines the change in the standard deviation of neighbouring clouds. The second filter uses a change in distance and intensity between neighbouring pules to refine the results from the first filter and estimate the glass profile width before updating the cartesian coordinate and range measurement by the instrument. Test results demonstrate the detection and localisation of glass and the elimination of errors caused by glass in occupancy grid maps. This novel method detects frameless glass from a long range and does not depend on intensity peak with an accuracy of 96.2%. |
---|