Cargando…
Driving Stress Detection Using Multimodal Convolutional Neural Networks with Nonlinear Representation of Short-Term Physiological Signals
Mental stress can lead to traffic accidents by reducing a driver’s concentration or increasing fatigue while driving. In recent years, demand for methods to detect drivers’ stress in advance to prevent dangerous situations increased. Thus, we propose a novel method for detecting driving stress using...
Autores principales: | Lee, Jaewon, Lee, Hyeonjeong, Shin, Miyoung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8038071/ https://www.ncbi.nlm.nih.gov/pubmed/33808147 http://dx.doi.org/10.3390/s21072381 |
Ejemplares similares
-
Learning Explainable Time-Morphology Patterns for Automatic Arrhythmia Classification from Short Single-Lead ECGs
por: Lee, Hyeonjeong, et al.
Publicado: (2021) -
Mining pathway associations for disease-related pathway activity analysis based on gene expression and methylation data
por: Lee, Hyeonjeong, et al.
Publicado: (2017) -
Research of Multimodal Medical Image Fusion Based on Parameter-Adaptive Pulse-Coupled Neural Network and Convolutional Sparse Representation
por: Xia, Jingming, et al.
Publicado: (2020) -
Multimode Gesture Recognition Algorithm Based on Convolutional Long Short-Term Memory Network
por: Lu, Ming-Xing, et al.
Publicado: (2022) -
A multimodal fusion method for Alzheimer’s disease based on DCT convolutional sparse representation
por: Zhang, Guo, et al.
Publicado: (2023)