Cargando…

Prevalence and Risk Factors of Infection in the Representative COVID-19 Cohort Munich

Given the large number of mild or asymptomatic SARS-CoV-2 cases, only population-based studies can provide reliable estimates of the magnitude of the pandemic. We therefore aimed to assess the sero-prevalence of SARS-CoV-2 in the Munich general population after the first wave of the pandemic. For th...

Descripción completa

Detalles Bibliográficos
Autores principales: Pritsch, Michael, Radon, Katja, Bakuli, Abhishek, Le Gleut, Ronan, Olbrich, Laura, Guggenbüehl Noller, Jessica Michelle, Saathoff, Elmar, Castelletti, Noemi, Garí, Mercè, Pütz, Peter, Schälte, Yannik, Frahnow, Turid, Wölfel, Roman, Rothe, Camilla, Pletschette, Michel, Metaxa, Dafni, Forster, Felix, Thiel, Verena, Rieß, Friedrich, Diefenbach, Maximilian Nikolaus, Fröschl, Günter, Bruger, Jan, Winter, Simon, Frese, Jonathan, Puchinger, Kerstin, Brand, Isabel, Kroidl, Inge, Hasenauer, Jan, Fuchs, Christiane, Wieser, Andreas, Hoelscher, Michael
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8038115/
https://www.ncbi.nlm.nih.gov/pubmed/33808249
http://dx.doi.org/10.3390/ijerph18073572
_version_ 1783677300762476544
author Pritsch, Michael
Radon, Katja
Bakuli, Abhishek
Le Gleut, Ronan
Olbrich, Laura
Guggenbüehl Noller, Jessica Michelle
Saathoff, Elmar
Castelletti, Noemi
Garí, Mercè
Pütz, Peter
Schälte, Yannik
Frahnow, Turid
Wölfel, Roman
Rothe, Camilla
Pletschette, Michel
Metaxa, Dafni
Forster, Felix
Thiel, Verena
Rieß, Friedrich
Diefenbach, Maximilian Nikolaus
Fröschl, Günter
Bruger, Jan
Winter, Simon
Frese, Jonathan
Puchinger, Kerstin
Brand, Isabel
Kroidl, Inge
Hasenauer, Jan
Fuchs, Christiane
Wieser, Andreas
Hoelscher, Michael
author_facet Pritsch, Michael
Radon, Katja
Bakuli, Abhishek
Le Gleut, Ronan
Olbrich, Laura
Guggenbüehl Noller, Jessica Michelle
Saathoff, Elmar
Castelletti, Noemi
Garí, Mercè
Pütz, Peter
Schälte, Yannik
Frahnow, Turid
Wölfel, Roman
Rothe, Camilla
Pletschette, Michel
Metaxa, Dafni
Forster, Felix
Thiel, Verena
Rieß, Friedrich
Diefenbach, Maximilian Nikolaus
Fröschl, Günter
Bruger, Jan
Winter, Simon
Frese, Jonathan
Puchinger, Kerstin
Brand, Isabel
Kroidl, Inge
Hasenauer, Jan
Fuchs, Christiane
Wieser, Andreas
Hoelscher, Michael
author_sort Pritsch, Michael
collection PubMed
description Given the large number of mild or asymptomatic SARS-CoV-2 cases, only population-based studies can provide reliable estimates of the magnitude of the pandemic. We therefore aimed to assess the sero-prevalence of SARS-CoV-2 in the Munich general population after the first wave of the pandemic. For this purpose, we drew a representative sample of 2994 private households and invited household members 14 years and older to complete questionnaires and to provide blood samples. SARS-CoV-2 seropositivity was defined as Roche N pan-Ig ≥ 0.4218. We adjusted the prevalence for the sampling design, sensitivity, and specificity. We investigated risk factors for SARS-CoV-2 seropositivity and geospatial transmission patterns by generalized linear mixed models and permutation tests. Seropositivity for SARS-CoV-2-specific antibodies was 1.82% (95% confidence interval (CI) 1.28–2.37%) as compared to 0.46% PCR-positive cases officially registered in Munich. Loss of the sense of smell or taste was associated with seropositivity (odds ratio (OR) 47.4; 95% CI 7.2–307.0) and infections clustered within households. By this first population-based study on SARS-CoV-2 prevalence in a large German municipality not affected by a superspreading event, we could show that at least one in four cases in private households was reported and known to the health authorities. These results will help authorities to estimate the true burden of disease in the population and to take evidence-based decisions on public health measures.
format Online
Article
Text
id pubmed-8038115
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-80381152021-04-12 Prevalence and Risk Factors of Infection in the Representative COVID-19 Cohort Munich Pritsch, Michael Radon, Katja Bakuli, Abhishek Le Gleut, Ronan Olbrich, Laura Guggenbüehl Noller, Jessica Michelle Saathoff, Elmar Castelletti, Noemi Garí, Mercè Pütz, Peter Schälte, Yannik Frahnow, Turid Wölfel, Roman Rothe, Camilla Pletschette, Michel Metaxa, Dafni Forster, Felix Thiel, Verena Rieß, Friedrich Diefenbach, Maximilian Nikolaus Fröschl, Günter Bruger, Jan Winter, Simon Frese, Jonathan Puchinger, Kerstin Brand, Isabel Kroidl, Inge Hasenauer, Jan Fuchs, Christiane Wieser, Andreas Hoelscher, Michael Int J Environ Res Public Health Article Given the large number of mild or asymptomatic SARS-CoV-2 cases, only population-based studies can provide reliable estimates of the magnitude of the pandemic. We therefore aimed to assess the sero-prevalence of SARS-CoV-2 in the Munich general population after the first wave of the pandemic. For this purpose, we drew a representative sample of 2994 private households and invited household members 14 years and older to complete questionnaires and to provide blood samples. SARS-CoV-2 seropositivity was defined as Roche N pan-Ig ≥ 0.4218. We adjusted the prevalence for the sampling design, sensitivity, and specificity. We investigated risk factors for SARS-CoV-2 seropositivity and geospatial transmission patterns by generalized linear mixed models and permutation tests. Seropositivity for SARS-CoV-2-specific antibodies was 1.82% (95% confidence interval (CI) 1.28–2.37%) as compared to 0.46% PCR-positive cases officially registered in Munich. Loss of the sense of smell or taste was associated with seropositivity (odds ratio (OR) 47.4; 95% CI 7.2–307.0) and infections clustered within households. By this first population-based study on SARS-CoV-2 prevalence in a large German municipality not affected by a superspreading event, we could show that at least one in four cases in private households was reported and known to the health authorities. These results will help authorities to estimate the true burden of disease in the population and to take evidence-based decisions on public health measures. MDPI 2021-03-30 /pmc/articles/PMC8038115/ /pubmed/33808249 http://dx.doi.org/10.3390/ijerph18073572 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Pritsch, Michael
Radon, Katja
Bakuli, Abhishek
Le Gleut, Ronan
Olbrich, Laura
Guggenbüehl Noller, Jessica Michelle
Saathoff, Elmar
Castelletti, Noemi
Garí, Mercè
Pütz, Peter
Schälte, Yannik
Frahnow, Turid
Wölfel, Roman
Rothe, Camilla
Pletschette, Michel
Metaxa, Dafni
Forster, Felix
Thiel, Verena
Rieß, Friedrich
Diefenbach, Maximilian Nikolaus
Fröschl, Günter
Bruger, Jan
Winter, Simon
Frese, Jonathan
Puchinger, Kerstin
Brand, Isabel
Kroidl, Inge
Hasenauer, Jan
Fuchs, Christiane
Wieser, Andreas
Hoelscher, Michael
Prevalence and Risk Factors of Infection in the Representative COVID-19 Cohort Munich
title Prevalence and Risk Factors of Infection in the Representative COVID-19 Cohort Munich
title_full Prevalence and Risk Factors of Infection in the Representative COVID-19 Cohort Munich
title_fullStr Prevalence and Risk Factors of Infection in the Representative COVID-19 Cohort Munich
title_full_unstemmed Prevalence and Risk Factors of Infection in the Representative COVID-19 Cohort Munich
title_short Prevalence and Risk Factors of Infection in the Representative COVID-19 Cohort Munich
title_sort prevalence and risk factors of infection in the representative covid-19 cohort munich
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8038115/
https://www.ncbi.nlm.nih.gov/pubmed/33808249
http://dx.doi.org/10.3390/ijerph18073572
work_keys_str_mv AT pritschmichael prevalenceandriskfactorsofinfectionintherepresentativecovid19cohortmunich
AT radonkatja prevalenceandriskfactorsofinfectionintherepresentativecovid19cohortmunich
AT bakuliabhishek prevalenceandriskfactorsofinfectionintherepresentativecovid19cohortmunich
AT legleutronan prevalenceandriskfactorsofinfectionintherepresentativecovid19cohortmunich
AT olbrichlaura prevalenceandriskfactorsofinfectionintherepresentativecovid19cohortmunich
AT guggenbuehlnollerjessicamichelle prevalenceandriskfactorsofinfectionintherepresentativecovid19cohortmunich
AT saathoffelmar prevalenceandriskfactorsofinfectionintherepresentativecovid19cohortmunich
AT castellettinoemi prevalenceandriskfactorsofinfectionintherepresentativecovid19cohortmunich
AT garimerce prevalenceandriskfactorsofinfectionintherepresentativecovid19cohortmunich
AT putzpeter prevalenceandriskfactorsofinfectionintherepresentativecovid19cohortmunich
AT schalteyannik prevalenceandriskfactorsofinfectionintherepresentativecovid19cohortmunich
AT frahnowturid prevalenceandriskfactorsofinfectionintherepresentativecovid19cohortmunich
AT wolfelroman prevalenceandriskfactorsofinfectionintherepresentativecovid19cohortmunich
AT rothecamilla prevalenceandriskfactorsofinfectionintherepresentativecovid19cohortmunich
AT pletschettemichel prevalenceandriskfactorsofinfectionintherepresentativecovid19cohortmunich
AT metaxadafni prevalenceandriskfactorsofinfectionintherepresentativecovid19cohortmunich
AT forsterfelix prevalenceandriskfactorsofinfectionintherepresentativecovid19cohortmunich
AT thielverena prevalenceandriskfactorsofinfectionintherepresentativecovid19cohortmunich
AT rießfriedrich prevalenceandriskfactorsofinfectionintherepresentativecovid19cohortmunich
AT diefenbachmaximiliannikolaus prevalenceandriskfactorsofinfectionintherepresentativecovid19cohortmunich
AT froschlgunter prevalenceandriskfactorsofinfectionintherepresentativecovid19cohortmunich
AT brugerjan prevalenceandriskfactorsofinfectionintherepresentativecovid19cohortmunich
AT wintersimon prevalenceandriskfactorsofinfectionintherepresentativecovid19cohortmunich
AT fresejonathan prevalenceandriskfactorsofinfectionintherepresentativecovid19cohortmunich
AT puchingerkerstin prevalenceandriskfactorsofinfectionintherepresentativecovid19cohortmunich
AT brandisabel prevalenceandriskfactorsofinfectionintherepresentativecovid19cohortmunich
AT kroidlinge prevalenceandriskfactorsofinfectionintherepresentativecovid19cohortmunich
AT hasenauerjan prevalenceandriskfactorsofinfectionintherepresentativecovid19cohortmunich
AT fuchschristiane prevalenceandriskfactorsofinfectionintherepresentativecovid19cohortmunich
AT wieserandreas prevalenceandriskfactorsofinfectionintherepresentativecovid19cohortmunich
AT hoelschermichael prevalenceandriskfactorsofinfectionintherepresentativecovid19cohortmunich
AT prevalenceandriskfactorsofinfectionintherepresentativecovid19cohortmunich