Cargando…

Mobility-Aware Privacy-Preserving Mobile Crowdsourcing †

The increasing popularity of smartphones and location-based service (LBS) has brought us a new experience of mobile crowdsourcing marked by the characteristics of network-interconnection and information-sharing. However, these mobile crowdsourcing applications suffer from various inferential attacks...

Descripción completa

Detalles Bibliográficos
Autores principales: Qiu, Guoying, Shen, Yulong, Cheng, Ke, Liu, Lingtong, Zeng, Shuiguang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8038310/
https://www.ncbi.nlm.nih.gov/pubmed/33918353
http://dx.doi.org/10.3390/s21072474
Descripción
Sumario:The increasing popularity of smartphones and location-based service (LBS) has brought us a new experience of mobile crowdsourcing marked by the characteristics of network-interconnection and information-sharing. However, these mobile crowdsourcing applications suffer from various inferential attacks based on mobile behavioral factors, such as location semantic, spatiotemporal correlation, etc. Unfortunately, most of the existing techniques protect the participant’s location-privacy according to actual trajectories. Once the protection fails, data leakage will directly threaten the participant’s location-related private information. It open the issue of participating in mobile crowdsourcing service without actual locations. In this paper, we propose a mobility-aware trajectory-prediction solution, TMarkov, for achieving privacy-preserving mobile crowdsourcing. Specifically, we introduce a time-partitioning concept into the Markov model to overcome its traditional limitations. A new transfer model is constructed to record the mobile user’s time-varying behavioral patterns. Then, an unbiased estimation is conducted according to Gibbs Sampling method, because of the data incompleteness. Finally, we have the TMarkov model which characterizes the participant’s dynamic mobile behaviors. With TMarkov in place, a mobility-aware spatiotemporal trajectory is predicted for the mobile user to participate in the crowdsourcing application. Extensive experiments with real-world dataset demonstrate that TMarkov well balances the trade-off between privacy preservation and data usability.