Cargando…
Classification of Dental Radiographs Using Deep Learning
Objectives: To retrospectively assess radiographic data and to prospectively classify radiographs (namely, panoramic, bitewing, periapical, and cephalometric images), we compared three deep learning architectures for their classification performance. Methods: Our dataset consisted of 31,288 panorami...
Autores principales: | Cejudo, Jose E., Chaurasia, Akhilanand, Feldberg, Ben, Krois, Joachim, Schwendicke, Falk |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8038360/ https://www.ncbi.nlm.nih.gov/pubmed/33916800 http://dx.doi.org/10.3390/jcm10071496 |
Ejemplares similares
-
Impact of Noisy Labels on Dental Deep Learning—Calculus Detection on Bitewing Radiographs
por: Büttner, Martha, et al.
Publicado: (2023) -
Impact of Image Context on Deep Learning for Classification of Teeth on Radiographs
por: Krois, Joachim, et al.
Publicado: (2021) -
Generalizability of deep learning models for dental image analysis
por: Krois, Joachim, et al.
Publicado: (2021) -
Segmentation of Dental Restorations on Panoramic Radiographs Using Deep Learning
por: Rohrer, Csaba, et al.
Publicado: (2022) -
Machine Learning in Dentistry: A Scoping Review
por: Arsiwala-Scheppach, Lubaina T., et al.
Publicado: (2023)