Cargando…
Stochastic-Biomechanic Modeling and Recognition of Human Movement Primitives, in Industry, Using Wearables
In industry, ergonomists apply heuristic methods to determine workers’ exposure to ergonomic risks; however, current methods are limited to evaluating postures or measuring the duration and frequency of professional tasks. The work described here aims to deepen ergonomic analysis by using joint angl...
Autores principales: | Olivas-Padilla, Brenda Elizabeth, Manitsaris, Sotiris, Menychtas, Dimitrios, Glushkova, Alina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8038416/ https://www.ncbi.nlm.nih.gov/pubmed/33916681 http://dx.doi.org/10.3390/s21072497 |
Ejemplares similares
-
Human Movement Representation on Multivariate Time Series for Recognition of Professional Gestures and Forecasting Their Trajectories
por: Manitsaris, Sotiris, et al.
Publicado: (2020) -
Editorial: Artificial Intelligence and Human Movement in Industries and Creation
por: Dimitropoulos, Kosmas, et al.
Publicado: (2021) -
Egocentric Gesture Recognition Using 3D Convolutional Neural Networks for the Spatiotemporal Adaptation of Collaborative Robots
por: Papanagiotou, Dimitris, et al.
Publicado: (2021) -
Human Movement Recognition Based on the Stochastic Characterisation of Acceleration Data
por: Munoz-Organero, Mario, et al.
Publicado: (2016) -
Wearables for Biomechanical Performance Optimization and Risk Assessment in Industrial and Sports Applications
por: McDevitt, Sam, et al.
Publicado: (2022)