Cargando…
The Fiber Optic Reel System: A Compact Deployment Solution for Tethered Live-Telemetry Deep-Sea Robots and Sensors
Tethered deep-sea robots and instrument platforms, such as Remotely Operated Vehicles (ROVs) and vertical-profiling or towed instrument arrays, commonly rely on fiber optics for real-time data transmission. Fiber optic tethers used for these applications are either heavily reinforced load-bearing ca...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8038450/ https://www.ncbi.nlm.nih.gov/pubmed/33916575 http://dx.doi.org/10.3390/s21072526 |
Sumario: | Tethered deep-sea robots and instrument platforms, such as Remotely Operated Vehicles (ROVs) and vertical-profiling or towed instrument arrays, commonly rely on fiber optics for real-time data transmission. Fiber optic tethers used for these applications are either heavily reinforced load-bearing cables used to support lifting and pulling, or bare optical fibers used in non-load bearing applications. Load-bearing tethers directly scale operations for deep-sea robots as the cable diameter, mass, and length typically require heavy winches and large surface support vessels to operate, and also guide the design of the deep-sea robot itself. In an effort to dramatically reduce the physical scale and operational overhead of tethered live-telemetry deep-sea robots and sensors, we have developed the Fiber Optic Reel System (FOReelS). FOReelS utilizes a customized electric fishing reel outfitted with a proprietary hollow-core braided fiber optic fishing line and mechanical termination assembly (FOFL), which offers an extremely small diameter (750 μm) load-bearing (90 lb/400 N breaking strength) tether to support live high-bandwidth data transmission as well as fiber optic sensing applications. The system incorporates a novel epoxy potted data payload system (DPS) that includes high-definition video, integrated lighting, rechargeable battery power, and gigabit ethernet fiber optic telemetry. In this paper we present the complete FOReelS design and field demonstrations to depths exceeding 780 m using small coastal support vessels of opportunity. FOReelS is likely the smallest form factor live-telemetry deep-sea exploration tool currently in existence, with a broad range of future applications envisioned for oceanographic sensing and communication. |
---|