Cargando…
Non-Destructive and Quantitative Evaluation of Rebar Corrosion by a Vibro-Doppler Radar Method
It is well known that evaluation of rebar corrosion is important for the maintenance of reinforced concrete structures, but, it is difficult to simply, quickly and quantitatively evaluate the amount of corrosion of rebars embedded in concrete by conventional non-destructive evaluation (NDE) methods...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8038566/ https://www.ncbi.nlm.nih.gov/pubmed/33916470 http://dx.doi.org/10.3390/s21072546 |
_version_ | 1783677405109420032 |
---|---|
author | Miwa, Takashi |
author_facet | Miwa, Takashi |
author_sort | Miwa, Takashi |
collection | PubMed |
description | It is well known that evaluation of rebar corrosion is important for the maintenance of reinforced concrete structures, but, it is difficult to simply, quickly and quantitatively evaluate the amount of corrosion of rebars embedded in concrete by conventional non-destructive evaluation (NDE) methods such as electrical, electromagnetic and mechanical method. This paper proposes a vibro-Doppler radar (VDR) measurement method to quantitatively evaluate rebar corrosion by measuring the vibration ability of the rebar forcibly vibrated in concrete by an excitation coil. It is experimentally demonstrated in RC test pieces that the rebar vibration displacement obtained by developed VDR method is valid and is less affected by the moisture in the concrete. In addition, simultaneous monitoring of the rebar vibration displacement of the test pieces is performed through an electrolytic corrosion test and the measured vibration displacement is compared to the rebar corrosion loss evaluated. As the results, it is cleared that the rebar vibration displacement starts to increase from slightly before the occurrences of corrosion crack on the concrete surface as the corrosion loss increases. It is also shown that the rebar vibration displacement becomes 4 times higher than that in initial condition at the rebar corrosion loss of 250 mg/cm(2). This implies that the VDR has potential to nondestructively and quantitatively evaluate rebar corrosion in concrete. |
format | Online Article Text |
id | pubmed-8038566 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-80385662021-04-12 Non-Destructive and Quantitative Evaluation of Rebar Corrosion by a Vibro-Doppler Radar Method Miwa, Takashi Sensors (Basel) Article It is well known that evaluation of rebar corrosion is important for the maintenance of reinforced concrete structures, but, it is difficult to simply, quickly and quantitatively evaluate the amount of corrosion of rebars embedded in concrete by conventional non-destructive evaluation (NDE) methods such as electrical, electromagnetic and mechanical method. This paper proposes a vibro-Doppler radar (VDR) measurement method to quantitatively evaluate rebar corrosion by measuring the vibration ability of the rebar forcibly vibrated in concrete by an excitation coil. It is experimentally demonstrated in RC test pieces that the rebar vibration displacement obtained by developed VDR method is valid and is less affected by the moisture in the concrete. In addition, simultaneous monitoring of the rebar vibration displacement of the test pieces is performed through an electrolytic corrosion test and the measured vibration displacement is compared to the rebar corrosion loss evaluated. As the results, it is cleared that the rebar vibration displacement starts to increase from slightly before the occurrences of corrosion crack on the concrete surface as the corrosion loss increases. It is also shown that the rebar vibration displacement becomes 4 times higher than that in initial condition at the rebar corrosion loss of 250 mg/cm(2). This implies that the VDR has potential to nondestructively and quantitatively evaluate rebar corrosion in concrete. MDPI 2021-04-05 /pmc/articles/PMC8038566/ /pubmed/33916470 http://dx.doi.org/10.3390/s21072546 Text en © 2021 by the author. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Miwa, Takashi Non-Destructive and Quantitative Evaluation of Rebar Corrosion by a Vibro-Doppler Radar Method |
title | Non-Destructive and Quantitative Evaluation of Rebar Corrosion by a Vibro-Doppler Radar Method |
title_full | Non-Destructive and Quantitative Evaluation of Rebar Corrosion by a Vibro-Doppler Radar Method |
title_fullStr | Non-Destructive and Quantitative Evaluation of Rebar Corrosion by a Vibro-Doppler Radar Method |
title_full_unstemmed | Non-Destructive and Quantitative Evaluation of Rebar Corrosion by a Vibro-Doppler Radar Method |
title_short | Non-Destructive and Quantitative Evaluation of Rebar Corrosion by a Vibro-Doppler Radar Method |
title_sort | non-destructive and quantitative evaluation of rebar corrosion by a vibro-doppler radar method |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8038566/ https://www.ncbi.nlm.nih.gov/pubmed/33916470 http://dx.doi.org/10.3390/s21072546 |
work_keys_str_mv | AT miwatakashi nondestructiveandquantitativeevaluationofrebarcorrosionbyavibrodopplerradarmethod |