Cargando…
Credibility Assessment Method of Sensor Data Based on Multi-Source Heterogeneous Information Fusion
The credibility of sensor data is essential for security monitoring. High-credibility data are the precondition for utilizing data and data analysis, but the existing data credibility evaluation methods rarely consider the spatio-temporal relationship between data sources, which usually leads to low...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8038569/ https://www.ncbi.nlm.nih.gov/pubmed/33916389 http://dx.doi.org/10.3390/s21072542 |
_version_ | 1783677405798334464 |
---|---|
author | Feng, Yanling Hu, Jixiong Duan, Rui Chen, Zhuming |
author_facet | Feng, Yanling Hu, Jixiong Duan, Rui Chen, Zhuming |
author_sort | Feng, Yanling |
collection | PubMed |
description | The credibility of sensor data is essential for security monitoring. High-credibility data are the precondition for utilizing data and data analysis, but the existing data credibility evaluation methods rarely consider the spatio-temporal relationship between data sources, which usually leads to low accuracy and low flexibility. In order to solve this problem, a new credibility evaluation method is proposed in this article, which includes two factors: the spatio-temporal relationship between data sources and the temporal correlation between time series data. First, the spatio-temporal relationship was used to obtain the credibility of data sources. Then, the combined credibility of data was calculated based on the autoregressive integrated moving average (ARIMA) model and back propagation (BP) neural network. Finally, the comprehensive data reliability for evaluating data quality can be acquired based on the credibility of data sources and combined data credibility. The experimental results show the effectiveness of the proposed method. |
format | Online Article Text |
id | pubmed-8038569 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-80385692021-04-12 Credibility Assessment Method of Sensor Data Based on Multi-Source Heterogeneous Information Fusion Feng, Yanling Hu, Jixiong Duan, Rui Chen, Zhuming Sensors (Basel) Article The credibility of sensor data is essential for security monitoring. High-credibility data are the precondition for utilizing data and data analysis, but the existing data credibility evaluation methods rarely consider the spatio-temporal relationship between data sources, which usually leads to low accuracy and low flexibility. In order to solve this problem, a new credibility evaluation method is proposed in this article, which includes two factors: the spatio-temporal relationship between data sources and the temporal correlation between time series data. First, the spatio-temporal relationship was used to obtain the credibility of data sources. Then, the combined credibility of data was calculated based on the autoregressive integrated moving average (ARIMA) model and back propagation (BP) neural network. Finally, the comprehensive data reliability for evaluating data quality can be acquired based on the credibility of data sources and combined data credibility. The experimental results show the effectiveness of the proposed method. MDPI 2021-04-05 /pmc/articles/PMC8038569/ /pubmed/33916389 http://dx.doi.org/10.3390/s21072542 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Feng, Yanling Hu, Jixiong Duan, Rui Chen, Zhuming Credibility Assessment Method of Sensor Data Based on Multi-Source Heterogeneous Information Fusion |
title | Credibility Assessment Method of Sensor Data Based on Multi-Source Heterogeneous Information Fusion |
title_full | Credibility Assessment Method of Sensor Data Based on Multi-Source Heterogeneous Information Fusion |
title_fullStr | Credibility Assessment Method of Sensor Data Based on Multi-Source Heterogeneous Information Fusion |
title_full_unstemmed | Credibility Assessment Method of Sensor Data Based on Multi-Source Heterogeneous Information Fusion |
title_short | Credibility Assessment Method of Sensor Data Based on Multi-Source Heterogeneous Information Fusion |
title_sort | credibility assessment method of sensor data based on multi-source heterogeneous information fusion |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8038569/ https://www.ncbi.nlm.nih.gov/pubmed/33916389 http://dx.doi.org/10.3390/s21072542 |
work_keys_str_mv | AT fengyanling credibilityassessmentmethodofsensordatabasedonmultisourceheterogeneousinformationfusion AT hujixiong credibilityassessmentmethodofsensordatabasedonmultisourceheterogeneousinformationfusion AT duanrui credibilityassessmentmethodofsensordatabasedonmultisourceheterogeneousinformationfusion AT chenzhuming credibilityassessmentmethodofsensordatabasedonmultisourceheterogeneousinformationfusion |