Cargando…
Deep Reinforcement Learning for End-to-End Local Motion Planning of Autonomous Aerial Robots in Unknown Outdoor Environments: Real-Time Flight Experiments
Autonomous navigation and collision avoidance missions represent a significant challenge for robotics systems as they generally operate in dynamic environments that require a high level of autonomy and flexible decision-making capabilities. This challenge becomes more applicable in micro aerial vehi...
Autores principales: | Doukhi, Oualid, Lee, Deok-Jin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8038595/ https://www.ncbi.nlm.nih.gov/pubmed/33916624 http://dx.doi.org/10.3390/s21072534 |
Ejemplares similares
-
An End-to-End Deep Reinforcement Learning-Based Intelligent Agent Capable of Autonomous Exploration in Unknown Environments
por: Ramezani Dooraki, Amir, et al.
Publicado: (2018) -
Deep Learning-Based NMPC for Local Motion Planning of Last-Mile Delivery Robot
por: Imad, Muhammad, et al.
Publicado: (2022) -
Deep Reinforcement Learning Approach with Multiple Experience Pools for UAV’s Autonomous Motion Planning in Complex Unknown Environments
por: Hu, Zijian, et al.
Publicado: (2020) -
End-to-End Autonomous Exploration with Deep Reinforcement Learning and Intrinsic Motivation
por: Ruan, Xiaogang, et al.
Publicado: (2021) -
Transfer Learning Based Semantic Segmentation for 3D Object Detection from Point Cloud
por: Imad, Muhammad, et al.
Publicado: (2021)