Cargando…
Recent Research Progress on Lignin-Derived Resins for Natural Fiber Composite Applications
By increasing the environmental concerns and depletion of petroleum resources, bio-based resins have gained interest. Recently, lignin, vanillin (4-hydroxy-3-methoxybenzaldehyde), and divanillin (6,6′-dihydroxy-5,5′-dimethoxybiphenyl-3,3′-dicarbaldehyde)-based resins have attracted attention due to...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8038635/ https://www.ncbi.nlm.nih.gov/pubmed/33916412 http://dx.doi.org/10.3390/polym13071162 |
Sumario: | By increasing the environmental concerns and depletion of petroleum resources, bio-based resins have gained interest. Recently, lignin, vanillin (4-hydroxy-3-methoxybenzaldehyde), and divanillin (6,6′-dihydroxy-5,5′-dimethoxybiphenyl-3,3′-dicarbaldehyde)-based resins have attracted attention due to the low cost, environmental benefits, good thermal stability, excellent mechanical properties, and suitability for high-performance natural fiber composite applications. This review highlights the recent use of lignin, vanillin, and divanillin-based resins with natural fiber composites and their synthesized processes. Finally, discussions are made on the curing kinetics, mechanical properties, flame retardancy, and bio-based resins’ adhesion property. |
---|