Cargando…
Functionalization of Single-Walled Carbon Nanotubes with End-Capped Polystyrene via a Single-Step Diels–Alder Cycloaddition
A facile, single-step, [4+2] Diels–Alder cycloaddition reaction for the surface functionalization of single-walled carbon nanotubes (SWNTs) with end-capped polystyrene chains is presented. The thermal cycloaddition reaction took place at high temperature (~230 °C) without any catalyst between the sp...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8038725/ https://www.ncbi.nlm.nih.gov/pubmed/33917281 http://dx.doi.org/10.3390/polym13071169 |
Sumario: | A facile, single-step, [4+2] Diels–Alder cycloaddition reaction for the surface functionalization of single-walled carbon nanotubes (SWNTs) with end-capped polystyrene chains is presented. The thermal cycloaddition reaction took place at high temperature (~230 °C) without any catalyst between the sp(2) network of carbon nanotubes, which acted as dienophile, and the diphenylethylene cyclobutene (DPE-CB) terminal group of the polystyrene chain. Anionic polymerization was employed for the synthesis of the polystyrene macromolecule, and successful and quantitative end-capping reaction with the DPE-CB molecule was confirmed by matrix-assisted laser desorption/ionization time of flight mass spectroscopy. Thermogravimetric analysis revealed the wt % of the grafted macromolecule on the CNT surface as well as the grafting density of the polymer chains on the SWNTs (0.027 chains nm(−2)). Direct evidence for the surface functionalization and the presence of thin polystyrene film was obtained by transmission electron microscopy (TEM) and by atomic force microscopy (AFM). |
---|