Cargando…

Bilateral Looser zones or pseudofractures in the anteromedial tibia as a component of medial tibial stress syndrome in athletes

PURPOSE: Medial tibial stress syndrome (MTSS) represents a common diagnosis in individuals exposed to repetitive high-stress loads affecting the lower limb, e.g., high-performance athletes. However, the diagnostic approach and therapeutic regimens are not well established. METHODS: Nine patients, di...

Descripción completa

Detalles Bibliográficos
Autores principales: Stürznickel, Julian, Jandl, Nico Maximilian, Delsmann, Maximilian M., von Vopelius, Emil, Barvencik, Florian, Amling, Michael, Ueblacker, Peter, Rolvien, Tim, Oheim, Ralf
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8038983/
https://www.ncbi.nlm.nih.gov/pubmed/32968845
http://dx.doi.org/10.1007/s00167-020-06290-0
Descripción
Sumario:PURPOSE: Medial tibial stress syndrome (MTSS) represents a common diagnosis in individuals exposed to repetitive high-stress loads affecting the lower limb, e.g., high-performance athletes. However, the diagnostic approach and therapeutic regimens are not well established. METHODS: Nine patients, diagnosed as MTSS, were analyzed by a comprehensive skeletal analysis including laboratory bone turnover parameters, dual-energy X-Ray absorptiometry (DXA), and high-resolution peripheral quantitative computed tomography (HR-pQCT). RESULTS: In 4/9 patients, bilateral pseudofractures were detected in the mid-shaft tibia. These patients had significantly lower levels of 25-hydroxycholecalciferol compared to patients with MTSS but similar levels of bone turnover parameters. Interestingly, the skeletal assessment revealed significantly higher bone mineral density (BMD) Z-scores at the hip (1.3 ± 0.6 vs. − 0.7 ± 0.5, p = 0.013) in patients with pseudofractures and a trend towards higher bone microarchitecture parameters measured by HR-pQCT at the distal tibia. Vitamin D supplementation restored the calcium-homeostasis in all patients. Combined with weight-bearing as tolerated, pseudofractures healed in all patients and return to competition was achieved. CONCLUSION: In conclusion, deficient vitamin D levels may lead to pseudofractures due to localized deterioration of mineralization, representing a pivotal component of MTSS in athletes with increased repetitive mechanical loading of the lower limbs. Moreover, the manifestation of pseudofractures is not a consequence of an altered BMD nor microarchitecture but appears in patients with exercise-induced BMD increase in combination with reduced 25-OH-D levels. The screening of MTSS patients for pseudofractures is crucial for the initiation of an appropriate treatment such as vitamin D supplementation to prevent a prolonged course of healing or recurrence. LEVEL OF EVIDENCE: III. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s00167-020-06290-0) contains supplementary material, which is available to authorized users.