Cargando…
Effective Analysis of Inpatient Satisfaction: The Random Forest Algorithm
PURPOSE: To identify the factors influencing inpatient satisfaction by fitting the optimal discriminant model. PATIENTS AND METHODS: A cross-sectional survey of inpatient satisfaction was conducted with 3888 patients in 16 large public hospitals in Zhejiang Province. Independent variables were scree...
Autores principales: | Li, Chengcheng, Liao, Conghui, Meng, Xuehui, Chen, Honghua, Chen, Weiling, Wei, Bo, Zhu, Pinghua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8039189/ https://www.ncbi.nlm.nih.gov/pubmed/33854303 http://dx.doi.org/10.2147/PPA.S294402 |
Ejemplares similares
-
Reporting Inpatients’ Experiences and Satisfaction in a National Psychiatric Facility: A Study Based on the Random Forest Algorithm
por: Haji, Eman A., et al.
Publicado: (2022) -
Exploring drivers of patient satisfaction using a random forest algorithm
por: Simsekler, Mecit Can Emre, et al.
Publicado: (2021) -
The Effect of Physician Communication on Inpatient Satisfaction
por: Moslehpour, Massoud, et al.
Publicado: (2022) -
Coalbed Methane Production Model Based on Random Forests
Optimized by a Genetic Algorithm
por: Zhu, Jie, et al.
Publicado: (2022) -
Quantitative analysis of fertilizer using laser-induced breakdown spectroscopy combined with random forest algorithm
por: Wei, Lai, et al.
Publicado: (2023)