Cargando…
Facial expression is retained in deep networks trained for face identification
Facial expressions distort visual cues for identification in two-dimensional images. Face processing systems in the brain must decouple image-based information from multiple sources to operate in the social world. Deep convolutional neural networks (DCNN) trained for face identification retain ident...
Autores principales: | Colón, Y. Ivette, Castillo, Carlos D., O’Toole, Alice J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8039571/ https://www.ncbi.nlm.nih.gov/pubmed/33821927 http://dx.doi.org/10.1167/jov.21.4.4 |
Ejemplares similares
-
Closing the gap between single-unit and neural population codes: Insights from deep learning in face recognition
por: Parde, Connor J., et al.
Publicado: (2021) -
Collaboration to improve cross-race face identification: Wisdom of the multi-racial crowd?
por: Cavazos, Jacqueline G., et al.
Publicado: (2023) -
Anatomic Study of the Retaining Ligaments of the Face and Applications for Facial Rejuvenation
por: Mendelson, Bryan C.
Publicado: (2013) -
Face recognition ability does not predict person identification performance: using individual data in the interpretation of group results
por: Noyes, Eilidh, et al.
Publicado: (2018) -
The FaceChannel: A Fast and Furious Deep Neural Network for Facial Expression Recognition
por: Barros, Pablo, et al.
Publicado: (2020)