Cargando…
Tracking-based deep learning method for temporomandibular joint segmentation
BACKGROUND: The shape, size, and surface information relating to the glenoid fossae and condyles in temporomandibular joints (TMJ) are essential for diagnosing and treating. Patients with TMJ disease often have surface abrasion which may cause fuzzy edges in computed tomography (CT) imaging, especia...
Autores principales: | Liu, Yi, Lu, Yao, Fan, Yubo, Mao, Longxia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AME Publishing Company
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8039636/ https://www.ncbi.nlm.nih.gov/pubmed/33850864 http://dx.doi.org/10.21037/atm-21-319 |
Ejemplares similares
-
New Methods for the Acoustic-Signal Segmentation of the Temporomandibular Joint
por: Kajor, Marcin, et al.
Publicado: (2022) -
Automated segmentation of articular disc of the temporomandibular joint on magnetic resonance images using deep learning
por: Ito, Shota, et al.
Publicado: (2022) -
Using deep learning to predict temporomandibular joint disc perforation based on magnetic resonance imaging
por: Kim, Jae-Young, et al.
Publicado: (2021) -
Lumbar spine segmentation method based on deep learning
por: Lu, Hongjiang, et al.
Publicado: (2023) -
Molecular signaling in temporomandibular joint osteoarthritis
por: Lu, Ke, et al.
Publicado: (2021)