Cargando…

A long non-coding RNAs expression signature to improve prognostic prediction of Wilms tumor in children

BACKGROUND: Wilms tumor (WT) is the most frequent malignancy of the kidney in children, and a subset of patients remains with a poor prognosis. This study aimed to identify key long non-coding RNAs (lncRNAs) related to prognosis and establish a genomic-clinicopathologic nomogram to predict survival...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Hongyan, Wang, Peng, Wang, Gang, Zhang, Shuo, Guo, Feng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: AME Publishing Company 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8039786/
https://www.ncbi.nlm.nih.gov/pubmed/33850811
http://dx.doi.org/10.21037/tp-20-318
_version_ 1783677668169875456
author Zhao, Hongyan
Wang, Peng
Wang, Gang
Zhang, Shuo
Guo, Feng
author_facet Zhao, Hongyan
Wang, Peng
Wang, Gang
Zhang, Shuo
Guo, Feng
author_sort Zhao, Hongyan
collection PubMed
description BACKGROUND: Wilms tumor (WT) is the most frequent malignancy of the kidney in children, and a subset of patients remains with a poor prognosis. This study aimed to identify key long non-coding RNAs (lncRNAs) related to prognosis and establish a genomic-clinicopathologic nomogram to predict survival in children with WT. METHODS: Clinical data of 124 WT patients and the relevant RNA sequencing data including lncRNAs expression signature of primary WT samples were obtained from the Therapeutically Applicable Research to Generate Effective Treatment (TARGET) Data Matrix. Then, lncRNAs associated with overall survival (OS) were identified through univariate Cox, least absolute shrinkage and selection operator (LASSO), and multivariate Cox regression analyses. The risk scores of 124 participants were calculated, and survival analyses were performed between low- and high-risk groups. A genomic-clinicopathologic nomogram was then developed and evaluated by time-dependent receiver operating characteristic (ROC) curves, including the area under the curve (AUC), calibration curve, and decision curve analysis. Subsequently, bioinformatics analyses were performed to explore the potential molecular mechanisms that affect the prognosis of WT. The package “DESeq2” was used to identify differentially expressed protein-coding genes (DEPCGs) between groups. Gene Set Enrichment Analysis (GSEA) was applied to explore the differences in pathways enrichment. The analytical tools CIBERSORTx and ESTIMATE were used to investigate the discrepancies of the immune microenvironment. RESULTS: A total of 10 lncRNAs were selected as independent predictors associated with OS (P<0.05). Participants in the high-risk group had a significantly worse OS and event-free survival (EFS) than those in the low-risk group (P<2E-16 and P=2.03E-04, respectively). The risk score and 3 clinicopathological features (gender, cooperative group protocol, and stage) were identified to construct the nomogram (combined model) (P=5.11E-17). The combined model (1-year AUC: 0.9272, 3-year AUC: 0.9428, 5-year AUC: 0.9259) and risk score model (1-year AUC: 0.9285, 3-year AUC: 0.9399, 5-year AUC: 0.9266) displayed higher predictive accuracy than that of the other models. Subsequently, 105 DEPCGs were identified. The GSEA revealed 4 significant pathways. Analysis with CIBERSORTx demonstrated that monocytes, macrophages M1, activated dendritic cells, and resting mast cells had significant infiltration differences between groups. CONCLUSIONS: This study constructed a genomic-clinicopathologic nomogram, which might present a novel and efficient method for treating patients with WT.
format Online
Article
Text
id pubmed-8039786
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher AME Publishing Company
record_format MEDLINE/PubMed
spelling pubmed-80397862021-04-12 A long non-coding RNAs expression signature to improve prognostic prediction of Wilms tumor in children Zhao, Hongyan Wang, Peng Wang, Gang Zhang, Shuo Guo, Feng Transl Pediatr Original Article BACKGROUND: Wilms tumor (WT) is the most frequent malignancy of the kidney in children, and a subset of patients remains with a poor prognosis. This study aimed to identify key long non-coding RNAs (lncRNAs) related to prognosis and establish a genomic-clinicopathologic nomogram to predict survival in children with WT. METHODS: Clinical data of 124 WT patients and the relevant RNA sequencing data including lncRNAs expression signature of primary WT samples were obtained from the Therapeutically Applicable Research to Generate Effective Treatment (TARGET) Data Matrix. Then, lncRNAs associated with overall survival (OS) were identified through univariate Cox, least absolute shrinkage and selection operator (LASSO), and multivariate Cox regression analyses. The risk scores of 124 participants were calculated, and survival analyses were performed between low- and high-risk groups. A genomic-clinicopathologic nomogram was then developed and evaluated by time-dependent receiver operating characteristic (ROC) curves, including the area under the curve (AUC), calibration curve, and decision curve analysis. Subsequently, bioinformatics analyses were performed to explore the potential molecular mechanisms that affect the prognosis of WT. The package “DESeq2” was used to identify differentially expressed protein-coding genes (DEPCGs) between groups. Gene Set Enrichment Analysis (GSEA) was applied to explore the differences in pathways enrichment. The analytical tools CIBERSORTx and ESTIMATE were used to investigate the discrepancies of the immune microenvironment. RESULTS: A total of 10 lncRNAs were selected as independent predictors associated with OS (P<0.05). Participants in the high-risk group had a significantly worse OS and event-free survival (EFS) than those in the low-risk group (P<2E-16 and P=2.03E-04, respectively). The risk score and 3 clinicopathological features (gender, cooperative group protocol, and stage) were identified to construct the nomogram (combined model) (P=5.11E-17). The combined model (1-year AUC: 0.9272, 3-year AUC: 0.9428, 5-year AUC: 0.9259) and risk score model (1-year AUC: 0.9285, 3-year AUC: 0.9399, 5-year AUC: 0.9266) displayed higher predictive accuracy than that of the other models. Subsequently, 105 DEPCGs were identified. The GSEA revealed 4 significant pathways. Analysis with CIBERSORTx demonstrated that monocytes, macrophages M1, activated dendritic cells, and resting mast cells had significant infiltration differences between groups. CONCLUSIONS: This study constructed a genomic-clinicopathologic nomogram, which might present a novel and efficient method for treating patients with WT. AME Publishing Company 2021-03 /pmc/articles/PMC8039786/ /pubmed/33850811 http://dx.doi.org/10.21037/tp-20-318 Text en 2021 Translational Pediatrics. All rights reserved. https://creativecommons.org/licenses/by-nc-nd/4.0/Open Access Statement: This is an Open Access article distributed in accordance with the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License (CC BY-NC-ND 4.0), which permits the non-commercial replication and distribution of the article with the strict proviso that no changes or edits are made and the original work is properly cited (including links to both the formal publication through the relevant DOI and the license). See: https://creativecommons.org/licenses/by-nc-nd/4.0 (https://creativecommons.org/licenses/by-nc-nd/4.0/) .
spellingShingle Original Article
Zhao, Hongyan
Wang, Peng
Wang, Gang
Zhang, Shuo
Guo, Feng
A long non-coding RNAs expression signature to improve prognostic prediction of Wilms tumor in children
title A long non-coding RNAs expression signature to improve prognostic prediction of Wilms tumor in children
title_full A long non-coding RNAs expression signature to improve prognostic prediction of Wilms tumor in children
title_fullStr A long non-coding RNAs expression signature to improve prognostic prediction of Wilms tumor in children
title_full_unstemmed A long non-coding RNAs expression signature to improve prognostic prediction of Wilms tumor in children
title_short A long non-coding RNAs expression signature to improve prognostic prediction of Wilms tumor in children
title_sort long non-coding rnas expression signature to improve prognostic prediction of wilms tumor in children
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8039786/
https://www.ncbi.nlm.nih.gov/pubmed/33850811
http://dx.doi.org/10.21037/tp-20-318
work_keys_str_mv AT zhaohongyan alongnoncodingrnasexpressionsignaturetoimproveprognosticpredictionofwilmstumorinchildren
AT wangpeng alongnoncodingrnasexpressionsignaturetoimproveprognosticpredictionofwilmstumorinchildren
AT wanggang alongnoncodingrnasexpressionsignaturetoimproveprognosticpredictionofwilmstumorinchildren
AT zhangshuo alongnoncodingrnasexpressionsignaturetoimproveprognosticpredictionofwilmstumorinchildren
AT guofeng alongnoncodingrnasexpressionsignaturetoimproveprognosticpredictionofwilmstumorinchildren
AT zhaohongyan longnoncodingrnasexpressionsignaturetoimproveprognosticpredictionofwilmstumorinchildren
AT wangpeng longnoncodingrnasexpressionsignaturetoimproveprognosticpredictionofwilmstumorinchildren
AT wanggang longnoncodingrnasexpressionsignaturetoimproveprognosticpredictionofwilmstumorinchildren
AT zhangshuo longnoncodingrnasexpressionsignaturetoimproveprognosticpredictionofwilmstumorinchildren
AT guofeng longnoncodingrnasexpressionsignaturetoimproveprognosticpredictionofwilmstumorinchildren