Cargando…
Triqler for MaxQuant: Enhancing Results from MaxQuant by Bayesian Error Propagation and Integration
[Image: see text] Error estimation for differential protein quantification by label-free shotgun proteomics is challenging due to the multitude of error sources, each contributing uncertainty to the final results. We have previously designed a Bayesian model, Triqler, to combine such error terms int...
Autores principales: | The, Matthew, Käll, Lukas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8041382/ https://www.ncbi.nlm.nih.gov/pubmed/33661646 http://dx.doi.org/10.1021/acs.jproteome.0c00902 |
Ejemplares similares
-
MaxReport: An Enhanced Proteomic Result Reporting Tool for MaxQuant
por: Zhou, Tao, et al.
Publicado: (2016) -
MaxQuant Software for Ion Mobility Enhanced Shotgun Proteomics
por: Prianichnikov, Nikita, et al.
Publicado: (2020) -
Visualization of LC‐MS/MS proteomics data in MaxQuant
por: Tyanova, Stefka, et al.
Publicado: (2015) -
Quantitative Cross-linking/Mass Spectrometry Using Isotope-labeled Cross-linkers and MaxQuant
por: Chen, Zhuo A., et al.
Publicado: (2016) -
Comparative Evaluation
of MaxQuant and Proteome Discoverer
MS1-Based Protein Quantification Tools
por: Palomba, Antonio, et al.
Publicado: (2021)