Cargando…
Prediction of ambulatory outcome in patients with corona radiata infarction using deep learning
Deep learning (DL) is an advanced machine learning approach used in diverse areas such as bioinformatics, image analysis, and natural language processing. Here, using brain magnetic resonance imaging (MRI) data obtained at early stages of infarcts, we attempted to develop a convolutional neural netw...
Autores principales: | Kim, Jeoung Kun, Choo, Yoo Jin, Shin, Hyunkwang, Choi, Gyu Sang, Chang, Min Cheol |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8041824/ https://www.ncbi.nlm.nih.gov/pubmed/33846472 http://dx.doi.org/10.1038/s41598-021-87176-0 |
Ejemplares similares
-
Deep Learning Algorithm Trained on Brain Magnetic Resonance Images and Clinical Data to Predict Motor Outcomes of Patients With Corona Radiata Infarct
por: Kim, Jeoung Kun, et al.
Publicado: (2022) -
Deep Learning Analysis to Automatically Detect the Presence of Penetration or Aspiration in Videofluoroscopic Swallowing Study
por: Kim, Jeoung Kun, et al.
Publicado: (2022) -
Development of convolutional neural network model for diagnosing osteochondral lesions of the talus using anteroposterior ankle radiographs
por: Shin, Hyunkwang, et al.
Publicado: (2023) -
Ataxic Hemiparesis after Corona Radiata Infarct: Diffusion Tensor Imaging Correlation of Corticoponto-cerebellar Tract Injury
por: Kim, Jun Young, et al.
Publicado: (2020) -
Development of convolutional neural network model for diagnosing tear of anterior cruciate ligament using only one knee magnetic resonance image
por: Shin, Hyunkwang, et al.
Publicado: (2022)