Cargando…
Novel resistance strategies to soybean cyst nematode (SCN) in wild soybean
Soybean cyst nematode (SCN, Heterodera glycine Ichinohe) is the most damaging soybean pest worldwide and management of SCN remains challenging. The current SCN resistant soybean cultivars, mainly developed from the cultivated soybean gene pool, are losing resistance due to SCN race shifts. The domes...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8041904/ https://www.ncbi.nlm.nih.gov/pubmed/33846373 http://dx.doi.org/10.1038/s41598-021-86793-z |
_version_ | 1783678034868436992 |
---|---|
author | Kofsky, Janice Zhang, Hengyou Song, Bao-Hua |
author_facet | Kofsky, Janice Zhang, Hengyou Song, Bao-Hua |
author_sort | Kofsky, Janice |
collection | PubMed |
description | Soybean cyst nematode (SCN, Heterodera glycine Ichinohe) is the most damaging soybean pest worldwide and management of SCN remains challenging. The current SCN resistant soybean cultivars, mainly developed from the cultivated soybean gene pool, are losing resistance due to SCN race shifts. The domestication process and modern breeding practices of soybean cultivars often involve strong selection for desired agronomic traits, and thus, decreased genetic variation in modern cultivars, which consequently resulted in limited sources of SCN resistance. Wild soybean (Glycine soja) is the wild ancestor of cultivated soybean (Glycine max) and it’s gene pool is indisputably more diverse than G. max. Our aim is to identify novel resistant genetic resources from wild soybean for the development of new SCN resistant cultivars. In this study, resistance response to HG type 2.5.7 (race 5) of SCN was investigated in a newly identified SCN resistant ecotype, NRS100. To understand the resistance mechanism in this ecotype, we compared RNA seq-based transcriptomes of NRS100 with two SCN-susceptible accessions of G. soja and G. max, as well as an extensively studied SCN resistant cultivar, Peking, under both control and nematode J2-treated conditions. The proposed mechanisms of resistance in NRS100 includes the suppression of the jasmonic acid (JA) signaling pathway in order to allow for salicylic acid (SA) signaling-activated resistance response and polyamine synthesis to promote structural integrity of root cell walls. Our study identifies a set of novel candidate genes and associated pathways involved in SCN resistance and the finding provides insight into the mechanism of SCN resistance in wild soybean, advancing the understanding of resistance and the use of wild soybean-sourced resistance for soybean improvement. |
format | Online Article Text |
id | pubmed-8041904 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-80419042021-04-13 Novel resistance strategies to soybean cyst nematode (SCN) in wild soybean Kofsky, Janice Zhang, Hengyou Song, Bao-Hua Sci Rep Article Soybean cyst nematode (SCN, Heterodera glycine Ichinohe) is the most damaging soybean pest worldwide and management of SCN remains challenging. The current SCN resistant soybean cultivars, mainly developed from the cultivated soybean gene pool, are losing resistance due to SCN race shifts. The domestication process and modern breeding practices of soybean cultivars often involve strong selection for desired agronomic traits, and thus, decreased genetic variation in modern cultivars, which consequently resulted in limited sources of SCN resistance. Wild soybean (Glycine soja) is the wild ancestor of cultivated soybean (Glycine max) and it’s gene pool is indisputably more diverse than G. max. Our aim is to identify novel resistant genetic resources from wild soybean for the development of new SCN resistant cultivars. In this study, resistance response to HG type 2.5.7 (race 5) of SCN was investigated in a newly identified SCN resistant ecotype, NRS100. To understand the resistance mechanism in this ecotype, we compared RNA seq-based transcriptomes of NRS100 with two SCN-susceptible accessions of G. soja and G. max, as well as an extensively studied SCN resistant cultivar, Peking, under both control and nematode J2-treated conditions. The proposed mechanisms of resistance in NRS100 includes the suppression of the jasmonic acid (JA) signaling pathway in order to allow for salicylic acid (SA) signaling-activated resistance response and polyamine synthesis to promote structural integrity of root cell walls. Our study identifies a set of novel candidate genes and associated pathways involved in SCN resistance and the finding provides insight into the mechanism of SCN resistance in wild soybean, advancing the understanding of resistance and the use of wild soybean-sourced resistance for soybean improvement. Nature Publishing Group UK 2021-04-12 /pmc/articles/PMC8041904/ /pubmed/33846373 http://dx.doi.org/10.1038/s41598-021-86793-z Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Kofsky, Janice Zhang, Hengyou Song, Bao-Hua Novel resistance strategies to soybean cyst nematode (SCN) in wild soybean |
title | Novel resistance strategies to soybean cyst nematode (SCN) in wild soybean |
title_full | Novel resistance strategies to soybean cyst nematode (SCN) in wild soybean |
title_fullStr | Novel resistance strategies to soybean cyst nematode (SCN) in wild soybean |
title_full_unstemmed | Novel resistance strategies to soybean cyst nematode (SCN) in wild soybean |
title_short | Novel resistance strategies to soybean cyst nematode (SCN) in wild soybean |
title_sort | novel resistance strategies to soybean cyst nematode (scn) in wild soybean |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8041904/ https://www.ncbi.nlm.nih.gov/pubmed/33846373 http://dx.doi.org/10.1038/s41598-021-86793-z |
work_keys_str_mv | AT kofskyjanice novelresistancestrategiestosoybeancystnematodescninwildsoybean AT zhanghengyou novelresistancestrategiestosoybeancystnematodescninwildsoybean AT songbaohua novelresistancestrategiestosoybeancystnematodescninwildsoybean |