Cargando…
COVID-19 information retrieval with deep-learning based semantic search, question answering, and abstractive summarization
The COVID-19 global pandemic has resulted in international efforts to understand, track, and mitigate the disease, yielding a significant corpus of COVID-19 and SARS-CoV-2-related publications across scientific disciplines. Throughout 2020, over 400,000 coronavirus-related publications have been col...
Autores principales: | Esteva, Andre, Kale, Anuprit, Paulus, Romain, Hashimoto, Kazuma, Yin, Wenpeng, Radev, Dragomir, Socher, Richard |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8041998/ https://www.ncbi.nlm.nih.gov/pubmed/33846532 http://dx.doi.org/10.1038/s41746-021-00437-0 |
Ejemplares similares
-
Question-driven summarization of answers to consumer health questions
por: Savery, Max, et al.
Publicado: (2020) -
Semi-supervised Extractive Question Summarization Using Question-Answer Pairs
por: Machida, Kazuya, et al.
Publicado: (2020) -
Biomedical question answering using semantic relations
por: Hristovski, Dimitar, et al.
Publicado: (2015) -
Extracting Semantics from Question-Answering Services for Snippet Reuse
por: Diamantopoulos, Themistoklis, et al.
Publicado: (2020) -
Exploiting Intersentence Information for Better Question-Driven Abstractive Summarization: Algorithm Development and Validation
por: Wang, Xin, et al.
Publicado: (2022)