Cargando…
Impact of image compression on deep learning-based mammogram classification
Image compression is used in several clinical organizations to help address the overhead associated with medical imaging. These methods reduce file size by using a compact representation of the original image. This study aimed to analyze the impact of image compression on the performance of deep lea...
Autores principales: | Jo, Yong-Yeon, Choi, Young Sang, Park, Hyun Woo, Lee, Jae Hyeok, Jung, Hyojung, Kim, Hyo-Eun, Ko, Kyounglan, Lee, Chan Wha, Cha, Hyo Soung, Hwangbo, Yul |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8042042/ https://www.ncbi.nlm.nih.gov/pubmed/33846388 http://dx.doi.org/10.1038/s41598-021-86726-w |
Ejemplares similares
-
Prediction of Prolonged Length of Hospital Stay After Cancer Surgery Using Machine Learning on Electronic Health Records: Retrospective Cross-sectional Study
por: Jo, Yong-Yeon, et al.
Publicado: (2021) -
Limitations of Deep Learning Attention Mechanisms in Clinical Research: Empirical Case Study Based on the Korean Diabetic Disease Setting
por: Kim, Junetae, et al.
Publicado: (2020) -
Clinical Image Evaluation of Film Mammograms in Korea: Comparison with the ACR Standard
por: Gwak, Yeon Joo, et al.
Publicado: (2013) -
Screening Model for Estimating Undiagnosed Diabetes among People with a Family History of Diabetes Mellitus: A KNHANES-Based Study
por: Ryu, Kwang Sun, et al.
Publicado: (2020) -
Performance Evaluation of Deep Learning Models on Mammogram Classification Using Small Dataset
por: Adedigba, Adeyinka P., et al.
Publicado: (2022)