Cargando…
Machine learning reveals that structural features distinguishing promiscuous and non-promiscuous compounds depend on target combinations
Compounds with defined multi-target activity (promiscuity) play an increasingly important role in drug discovery. However, the molecular basis of multi-target activity is currently only little understood. In particular, it remains unclear whether structural features exist that generally characterize...
Autores principales: | Feldmann, Christian, Bajorath, Jürgen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8042106/ https://www.ncbi.nlm.nih.gov/pubmed/33846469 http://dx.doi.org/10.1038/s41598-021-87042-z |
Ejemplares similares
-
Prediction of Promiscuity Cliffs Using Machine Learning
por: Blaschke, Thomas, et al.
Publicado: (2020) -
Identifying Promiscuous Compounds with Activity against Different Target Classes
por: Feldmann, Christian, et al.
Publicado: (2019) -
Data structures for compound promiscuity analysis: promiscuity cliffs, pathways and promiscuity hubs formed by inhibitors of the human kinome
por: Miljković, Filip, et al.
Publicado: (2019) -
High-resolution view of compound promiscuity
por: Hu, Ye, et al.
Publicado: (2013) -
Promiscuity progression of bioactive compounds over time
por: Hu, Ye, et al.
Publicado: (2015)