Cargando…

Heidelberg colorectal data set for surgical data science in the sensor operating room

Image-based tracking of medical instruments is an integral part of surgical data science applications. Previous research has addressed the tasks of detecting, segmenting and tracking medical instruments based on laparoscopic video data. However, the proposed methods still tend to fail when applied t...

Descripción completa

Detalles Bibliográficos
Autores principales: Maier-Hein, Lena, Wagner, Martin, Ross, Tobias, Reinke, Annika, Bodenstedt, Sebastian, Full, Peter M., Hempe, Hellena, Mindroc-Filimon, Diana, Scholz, Patrick, Tran, Thuy Nuong, Bruno, Pierangela, Kisilenko, Anna, Müller, Benjamin, Davitashvili, Tornike, Capek, Manuela, Tizabi, Minu D., Eisenmann, Matthias, Adler, Tim J., Gröhl, Janek, Schellenberg, Melanie, Seidlitz, Silvia, Lai, T. Y. Emmy, Pekdemir, Bünyamin, Roethlingshoefer, Veith, Both, Fabian, Bittel, Sebastian, Mengler, Marc, Mündermann, Lars, Apitz, Martin, Kopp-Schneider, Annette, Speidel, Stefanie, Nickel, Felix, Probst, Pascal, Kenngott, Hannes G., Müller-Stich, Beat P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8042116/
https://www.ncbi.nlm.nih.gov/pubmed/33846356
http://dx.doi.org/10.1038/s41597-021-00882-2
_version_ 1783678059041259520
author Maier-Hein, Lena
Wagner, Martin
Ross, Tobias
Reinke, Annika
Bodenstedt, Sebastian
Full, Peter M.
Hempe, Hellena
Mindroc-Filimon, Diana
Scholz, Patrick
Tran, Thuy Nuong
Bruno, Pierangela
Kisilenko, Anna
Müller, Benjamin
Davitashvili, Tornike
Capek, Manuela
Tizabi, Minu D.
Eisenmann, Matthias
Adler, Tim J.
Gröhl, Janek
Schellenberg, Melanie
Seidlitz, Silvia
Lai, T. Y. Emmy
Pekdemir, Bünyamin
Roethlingshoefer, Veith
Both, Fabian
Bittel, Sebastian
Mengler, Marc
Mündermann, Lars
Apitz, Martin
Kopp-Schneider, Annette
Speidel, Stefanie
Nickel, Felix
Probst, Pascal
Kenngott, Hannes G.
Müller-Stich, Beat P.
author_facet Maier-Hein, Lena
Wagner, Martin
Ross, Tobias
Reinke, Annika
Bodenstedt, Sebastian
Full, Peter M.
Hempe, Hellena
Mindroc-Filimon, Diana
Scholz, Patrick
Tran, Thuy Nuong
Bruno, Pierangela
Kisilenko, Anna
Müller, Benjamin
Davitashvili, Tornike
Capek, Manuela
Tizabi, Minu D.
Eisenmann, Matthias
Adler, Tim J.
Gröhl, Janek
Schellenberg, Melanie
Seidlitz, Silvia
Lai, T. Y. Emmy
Pekdemir, Bünyamin
Roethlingshoefer, Veith
Both, Fabian
Bittel, Sebastian
Mengler, Marc
Mündermann, Lars
Apitz, Martin
Kopp-Schneider, Annette
Speidel, Stefanie
Nickel, Felix
Probst, Pascal
Kenngott, Hannes G.
Müller-Stich, Beat P.
author_sort Maier-Hein, Lena
collection PubMed
description Image-based tracking of medical instruments is an integral part of surgical data science applications. Previous research has addressed the tasks of detecting, segmenting and tracking medical instruments based on laparoscopic video data. However, the proposed methods still tend to fail when applied to challenging images and do not generalize well to data they have not been trained on. This paper introduces the Heidelberg Colorectal (HeiCo) data set - the first publicly available data set enabling comprehensive benchmarking of medical instrument detection and segmentation algorithms with a specific emphasis on method robustness and generalization capabilities. Our data set comprises 30 laparoscopic videos and corresponding sensor data from medical devices in the operating room for three different types of laparoscopic surgery. Annotations include surgical phase labels for all video frames as well as information on instrument presence and corresponding instance-wise segmentation masks for surgical instruments (if any) in more than 10,000 individual frames. The data has successfully been used to organize international competitions within the Endoscopic Vision Challenges 2017 and 2019.
format Online
Article
Text
id pubmed-8042116
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-80421162021-04-28 Heidelberg colorectal data set for surgical data science in the sensor operating room Maier-Hein, Lena Wagner, Martin Ross, Tobias Reinke, Annika Bodenstedt, Sebastian Full, Peter M. Hempe, Hellena Mindroc-Filimon, Diana Scholz, Patrick Tran, Thuy Nuong Bruno, Pierangela Kisilenko, Anna Müller, Benjamin Davitashvili, Tornike Capek, Manuela Tizabi, Minu D. Eisenmann, Matthias Adler, Tim J. Gröhl, Janek Schellenberg, Melanie Seidlitz, Silvia Lai, T. Y. Emmy Pekdemir, Bünyamin Roethlingshoefer, Veith Both, Fabian Bittel, Sebastian Mengler, Marc Mündermann, Lars Apitz, Martin Kopp-Schneider, Annette Speidel, Stefanie Nickel, Felix Probst, Pascal Kenngott, Hannes G. Müller-Stich, Beat P. Sci Data Data Descriptor Image-based tracking of medical instruments is an integral part of surgical data science applications. Previous research has addressed the tasks of detecting, segmenting and tracking medical instruments based on laparoscopic video data. However, the proposed methods still tend to fail when applied to challenging images and do not generalize well to data they have not been trained on. This paper introduces the Heidelberg Colorectal (HeiCo) data set - the first publicly available data set enabling comprehensive benchmarking of medical instrument detection and segmentation algorithms with a specific emphasis on method robustness and generalization capabilities. Our data set comprises 30 laparoscopic videos and corresponding sensor data from medical devices in the operating room for three different types of laparoscopic surgery. Annotations include surgical phase labels for all video frames as well as information on instrument presence and corresponding instance-wise segmentation masks for surgical instruments (if any) in more than 10,000 individual frames. The data has successfully been used to organize international competitions within the Endoscopic Vision Challenges 2017 and 2019. Nature Publishing Group UK 2021-04-12 /pmc/articles/PMC8042116/ /pubmed/33846356 http://dx.doi.org/10.1038/s41597-021-00882-2 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) applies to the metadata files associated with this article.
spellingShingle Data Descriptor
Maier-Hein, Lena
Wagner, Martin
Ross, Tobias
Reinke, Annika
Bodenstedt, Sebastian
Full, Peter M.
Hempe, Hellena
Mindroc-Filimon, Diana
Scholz, Patrick
Tran, Thuy Nuong
Bruno, Pierangela
Kisilenko, Anna
Müller, Benjamin
Davitashvili, Tornike
Capek, Manuela
Tizabi, Minu D.
Eisenmann, Matthias
Adler, Tim J.
Gröhl, Janek
Schellenberg, Melanie
Seidlitz, Silvia
Lai, T. Y. Emmy
Pekdemir, Bünyamin
Roethlingshoefer, Veith
Both, Fabian
Bittel, Sebastian
Mengler, Marc
Mündermann, Lars
Apitz, Martin
Kopp-Schneider, Annette
Speidel, Stefanie
Nickel, Felix
Probst, Pascal
Kenngott, Hannes G.
Müller-Stich, Beat P.
Heidelberg colorectal data set for surgical data science in the sensor operating room
title Heidelberg colorectal data set for surgical data science in the sensor operating room
title_full Heidelberg colorectal data set for surgical data science in the sensor operating room
title_fullStr Heidelberg colorectal data set for surgical data science in the sensor operating room
title_full_unstemmed Heidelberg colorectal data set for surgical data science in the sensor operating room
title_short Heidelberg colorectal data set for surgical data science in the sensor operating room
title_sort heidelberg colorectal data set for surgical data science in the sensor operating room
topic Data Descriptor
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8042116/
https://www.ncbi.nlm.nih.gov/pubmed/33846356
http://dx.doi.org/10.1038/s41597-021-00882-2
work_keys_str_mv AT maierheinlena heidelbergcolorectaldatasetforsurgicaldatascienceinthesensoroperatingroom
AT wagnermartin heidelbergcolorectaldatasetforsurgicaldatascienceinthesensoroperatingroom
AT rosstobias heidelbergcolorectaldatasetforsurgicaldatascienceinthesensoroperatingroom
AT reinkeannika heidelbergcolorectaldatasetforsurgicaldatascienceinthesensoroperatingroom
AT bodenstedtsebastian heidelbergcolorectaldatasetforsurgicaldatascienceinthesensoroperatingroom
AT fullpeterm heidelbergcolorectaldatasetforsurgicaldatascienceinthesensoroperatingroom
AT hempehellena heidelbergcolorectaldatasetforsurgicaldatascienceinthesensoroperatingroom
AT mindrocfilimondiana heidelbergcolorectaldatasetforsurgicaldatascienceinthesensoroperatingroom
AT scholzpatrick heidelbergcolorectaldatasetforsurgicaldatascienceinthesensoroperatingroom
AT tranthuynuong heidelbergcolorectaldatasetforsurgicaldatascienceinthesensoroperatingroom
AT brunopierangela heidelbergcolorectaldatasetforsurgicaldatascienceinthesensoroperatingroom
AT kisilenkoanna heidelbergcolorectaldatasetforsurgicaldatascienceinthesensoroperatingroom
AT mullerbenjamin heidelbergcolorectaldatasetforsurgicaldatascienceinthesensoroperatingroom
AT davitashvilitornike heidelbergcolorectaldatasetforsurgicaldatascienceinthesensoroperatingroom
AT capekmanuela heidelbergcolorectaldatasetforsurgicaldatascienceinthesensoroperatingroom
AT tizabiminud heidelbergcolorectaldatasetforsurgicaldatascienceinthesensoroperatingroom
AT eisenmannmatthias heidelbergcolorectaldatasetforsurgicaldatascienceinthesensoroperatingroom
AT adlertimj heidelbergcolorectaldatasetforsurgicaldatascienceinthesensoroperatingroom
AT grohljanek heidelbergcolorectaldatasetforsurgicaldatascienceinthesensoroperatingroom
AT schellenbergmelanie heidelbergcolorectaldatasetforsurgicaldatascienceinthesensoroperatingroom
AT seidlitzsilvia heidelbergcolorectaldatasetforsurgicaldatascienceinthesensoroperatingroom
AT laityemmy heidelbergcolorectaldatasetforsurgicaldatascienceinthesensoroperatingroom
AT pekdemirbunyamin heidelbergcolorectaldatasetforsurgicaldatascienceinthesensoroperatingroom
AT roethlingshoeferveith heidelbergcolorectaldatasetforsurgicaldatascienceinthesensoroperatingroom
AT bothfabian heidelbergcolorectaldatasetforsurgicaldatascienceinthesensoroperatingroom
AT bittelsebastian heidelbergcolorectaldatasetforsurgicaldatascienceinthesensoroperatingroom
AT menglermarc heidelbergcolorectaldatasetforsurgicaldatascienceinthesensoroperatingroom
AT mundermannlars heidelbergcolorectaldatasetforsurgicaldatascienceinthesensoroperatingroom
AT apitzmartin heidelbergcolorectaldatasetforsurgicaldatascienceinthesensoroperatingroom
AT koppschneiderannette heidelbergcolorectaldatasetforsurgicaldatascienceinthesensoroperatingroom
AT speidelstefanie heidelbergcolorectaldatasetforsurgicaldatascienceinthesensoroperatingroom
AT nickelfelix heidelbergcolorectaldatasetforsurgicaldatascienceinthesensoroperatingroom
AT probstpascal heidelbergcolorectaldatasetforsurgicaldatascienceinthesensoroperatingroom
AT kenngotthannesg heidelbergcolorectaldatasetforsurgicaldatascienceinthesensoroperatingroom
AT mullerstichbeatp heidelbergcolorectaldatasetforsurgicaldatascienceinthesensoroperatingroom