Cargando…
Feature Selection Using Approximate Conditional Entropy Based on Fuzzy Information Granule for Gene Expression Data Classification
Classification is widely used in gene expression data analysis. Feature selection is usually performed before classification because of the large number of genes and the small sample size in gene expression data. In this article, a novel feature selection algorithm using approximate conditional entr...
Autor principal: | Zhang, Hengyi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8042210/ https://www.ncbi.nlm.nih.gov/pubmed/33859666 http://dx.doi.org/10.3389/fgene.2021.631505 |
Ejemplares similares
-
sigFeature: Novel Significant Feature Selection Method for Classification of Gene Expression Data Using Support Vector Machine and t Statistic
por: Das, Pijush, et al.
Publicado: (2020) -
Feature Selection for Breast Cancer Classification by Integrating Somatic Mutation and Gene Expression
por: Jiang, Qin, et al.
Publicado: (2021) -
Fuzziness in information systems: how to deal with crisp and fuzzy data in selection, classification, and summarization
por: Hudec, Miroslav
Publicado: (2016) -
Fuzzy sets in approximate reasoning and information systems
por: Bezdek, James, et al.
Publicado: (1999) -
A Fast Feature Selection Algorithm by Accelerating Computation of Fuzzy Rough Set-Based Information Entropy
por: Zhang, Xiao, et al.
Publicado: (2018)