Cargando…
Direct-ink-write printing of hydrogels using dilute inks
Direct-ink-write (DIW) printing has been used in myriad applications. Existing DIW printing relies on inks of specific rheology to compromise with printing process, imposing restrictions on the choice of printable materials. Reported ink viscosity ranges from 10(−1) to 10(3) Pa·s. Here we report a m...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8042399/ https://www.ncbi.nlm.nih.gov/pubmed/33870134 http://dx.doi.org/10.1016/j.isci.2021.102319 |
Sumario: | Direct-ink-write (DIW) printing has been used in myriad applications. Existing DIW printing relies on inks of specific rheology to compromise with printing process, imposing restrictions on the choice of printable materials. Reported ink viscosity ranges from 10(−1) to 10(3) Pa·s. Here we report a method to enable DIW printing that is compatible with dilute ink (10(−3) Pa·s) by manipulating the interactions between ink and substrate. By exemplifying hydrogel printing, we build a printing system and show that dilute ink of appropriate surface energy, once extruded, can spontaneously wet and reside within the region of higher surface energy on a substrate of lower surface energy, while resisting gravity and maintaining shape before solidification. We demonstrate the diversity for printing various materials on various substrates and three deployments immediately enabled by the proposed method. The method expands the range of printable materials for DIW printing and the toolbox for additive manufacturing. |
---|