Cargando…
A Poisson generalized linear model application to disentangle the effects of various parameters on neurophysiological discharges
The protocol provides an extensive guide to apply the generalized linear model framework to neurophysiological recordings. This flexible technique can be adapted to test and quantify the contributions of many different parameters (e.g., kinematics, target position, choice, reward) on neural activity...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8042415/ https://www.ncbi.nlm.nih.gov/pubmed/33870221 http://dx.doi.org/10.1016/j.xpro.2021.100413 |
_version_ | 1783678123157487616 |
---|---|
author | Vaccari, Francesco Edoardo Diomedi, Stefano Filippini, Matteo Galletti, Claudio Fattori, Patrizia |
author_facet | Vaccari, Francesco Edoardo Diomedi, Stefano Filippini, Matteo Galletti, Claudio Fattori, Patrizia |
author_sort | Vaccari, Francesco Edoardo |
collection | PubMed |
description | The protocol provides an extensive guide to apply the generalized linear model framework to neurophysiological recordings. This flexible technique can be adapted to test and quantify the contributions of many different parameters (e.g., kinematics, target position, choice, reward) on neural activity. To weight the influence of each parameter, we developed an intuitive metric (“w-value”) that can be used to build a “functional fingerprint” characteristic for each neuron. We also provide suggestions to extract complementary useful information from the method. For complete details on the use and execution of this protocol, please refer to Diomedi et al. (2020). |
format | Online Article Text |
id | pubmed-8042415 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-80424152021-04-15 A Poisson generalized linear model application to disentangle the effects of various parameters on neurophysiological discharges Vaccari, Francesco Edoardo Diomedi, Stefano Filippini, Matteo Galletti, Claudio Fattori, Patrizia STAR Protoc Protocol The protocol provides an extensive guide to apply the generalized linear model framework to neurophysiological recordings. This flexible technique can be adapted to test and quantify the contributions of many different parameters (e.g., kinematics, target position, choice, reward) on neural activity. To weight the influence of each parameter, we developed an intuitive metric (“w-value”) that can be used to build a “functional fingerprint” characteristic for each neuron. We also provide suggestions to extract complementary useful information from the method. For complete details on the use and execution of this protocol, please refer to Diomedi et al. (2020). Elsevier 2021-03-29 /pmc/articles/PMC8042415/ /pubmed/33870221 http://dx.doi.org/10.1016/j.xpro.2021.100413 Text en © 2021 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Protocol Vaccari, Francesco Edoardo Diomedi, Stefano Filippini, Matteo Galletti, Claudio Fattori, Patrizia A Poisson generalized linear model application to disentangle the effects of various parameters on neurophysiological discharges |
title | A Poisson generalized linear model application to disentangle the effects of various parameters on neurophysiological discharges |
title_full | A Poisson generalized linear model application to disentangle the effects of various parameters on neurophysiological discharges |
title_fullStr | A Poisson generalized linear model application to disentangle the effects of various parameters on neurophysiological discharges |
title_full_unstemmed | A Poisson generalized linear model application to disentangle the effects of various parameters on neurophysiological discharges |
title_short | A Poisson generalized linear model application to disentangle the effects of various parameters on neurophysiological discharges |
title_sort | poisson generalized linear model application to disentangle the effects of various parameters on neurophysiological discharges |
topic | Protocol |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8042415/ https://www.ncbi.nlm.nih.gov/pubmed/33870221 http://dx.doi.org/10.1016/j.xpro.2021.100413 |
work_keys_str_mv | AT vaccarifrancescoedoardo apoissongeneralizedlinearmodelapplicationtodisentangletheeffectsofvariousparametersonneurophysiologicaldischarges AT diomedistefano apoissongeneralizedlinearmodelapplicationtodisentangletheeffectsofvariousparametersonneurophysiologicaldischarges AT filippinimatteo apoissongeneralizedlinearmodelapplicationtodisentangletheeffectsofvariousparametersonneurophysiologicaldischarges AT galletticlaudio apoissongeneralizedlinearmodelapplicationtodisentangletheeffectsofvariousparametersonneurophysiologicaldischarges AT fattoripatrizia apoissongeneralizedlinearmodelapplicationtodisentangletheeffectsofvariousparametersonneurophysiologicaldischarges AT vaccarifrancescoedoardo poissongeneralizedlinearmodelapplicationtodisentangletheeffectsofvariousparametersonneurophysiologicaldischarges AT diomedistefano poissongeneralizedlinearmodelapplicationtodisentangletheeffectsofvariousparametersonneurophysiologicaldischarges AT filippinimatteo poissongeneralizedlinearmodelapplicationtodisentangletheeffectsofvariousparametersonneurophysiologicaldischarges AT galletticlaudio poissongeneralizedlinearmodelapplicationtodisentangletheeffectsofvariousparametersonneurophysiologicaldischarges AT fattoripatrizia poissongeneralizedlinearmodelapplicationtodisentangletheeffectsofvariousparametersonneurophysiologicaldischarges |