Cargando…

A Poisson generalized linear model application to disentangle the effects of various parameters on neurophysiological discharges

The protocol provides an extensive guide to apply the generalized linear model framework to neurophysiological recordings. This flexible technique can be adapted to test and quantify the contributions of many different parameters (e.g., kinematics, target position, choice, reward) on neural activity...

Descripción completa

Detalles Bibliográficos
Autores principales: Vaccari, Francesco Edoardo, Diomedi, Stefano, Filippini, Matteo, Galletti, Claudio, Fattori, Patrizia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8042415/
https://www.ncbi.nlm.nih.gov/pubmed/33870221
http://dx.doi.org/10.1016/j.xpro.2021.100413
_version_ 1783678123157487616
author Vaccari, Francesco Edoardo
Diomedi, Stefano
Filippini, Matteo
Galletti, Claudio
Fattori, Patrizia
author_facet Vaccari, Francesco Edoardo
Diomedi, Stefano
Filippini, Matteo
Galletti, Claudio
Fattori, Patrizia
author_sort Vaccari, Francesco Edoardo
collection PubMed
description The protocol provides an extensive guide to apply the generalized linear model framework to neurophysiological recordings. This flexible technique can be adapted to test and quantify the contributions of many different parameters (e.g., kinematics, target position, choice, reward) on neural activity. To weight the influence of each parameter, we developed an intuitive metric (“w-value”) that can be used to build a “functional fingerprint” characteristic for each neuron. We also provide suggestions to extract complementary useful information from the method. For complete details on the use and execution of this protocol, please refer to Diomedi et al. (2020).
format Online
Article
Text
id pubmed-8042415
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-80424152021-04-15 A Poisson generalized linear model application to disentangle the effects of various parameters on neurophysiological discharges Vaccari, Francesco Edoardo Diomedi, Stefano Filippini, Matteo Galletti, Claudio Fattori, Patrizia STAR Protoc Protocol The protocol provides an extensive guide to apply the generalized linear model framework to neurophysiological recordings. This flexible technique can be adapted to test and quantify the contributions of many different parameters (e.g., kinematics, target position, choice, reward) on neural activity. To weight the influence of each parameter, we developed an intuitive metric (“w-value”) that can be used to build a “functional fingerprint” characteristic for each neuron. We also provide suggestions to extract complementary useful information from the method. For complete details on the use and execution of this protocol, please refer to Diomedi et al. (2020). Elsevier 2021-03-29 /pmc/articles/PMC8042415/ /pubmed/33870221 http://dx.doi.org/10.1016/j.xpro.2021.100413 Text en © 2021 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Protocol
Vaccari, Francesco Edoardo
Diomedi, Stefano
Filippini, Matteo
Galletti, Claudio
Fattori, Patrizia
A Poisson generalized linear model application to disentangle the effects of various parameters on neurophysiological discharges
title A Poisson generalized linear model application to disentangle the effects of various parameters on neurophysiological discharges
title_full A Poisson generalized linear model application to disentangle the effects of various parameters on neurophysiological discharges
title_fullStr A Poisson generalized linear model application to disentangle the effects of various parameters on neurophysiological discharges
title_full_unstemmed A Poisson generalized linear model application to disentangle the effects of various parameters on neurophysiological discharges
title_short A Poisson generalized linear model application to disentangle the effects of various parameters on neurophysiological discharges
title_sort poisson generalized linear model application to disentangle the effects of various parameters on neurophysiological discharges
topic Protocol
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8042415/
https://www.ncbi.nlm.nih.gov/pubmed/33870221
http://dx.doi.org/10.1016/j.xpro.2021.100413
work_keys_str_mv AT vaccarifrancescoedoardo apoissongeneralizedlinearmodelapplicationtodisentangletheeffectsofvariousparametersonneurophysiologicaldischarges
AT diomedistefano apoissongeneralizedlinearmodelapplicationtodisentangletheeffectsofvariousparametersonneurophysiologicaldischarges
AT filippinimatteo apoissongeneralizedlinearmodelapplicationtodisentangletheeffectsofvariousparametersonneurophysiologicaldischarges
AT galletticlaudio apoissongeneralizedlinearmodelapplicationtodisentangletheeffectsofvariousparametersonneurophysiologicaldischarges
AT fattoripatrizia apoissongeneralizedlinearmodelapplicationtodisentangletheeffectsofvariousparametersonneurophysiologicaldischarges
AT vaccarifrancescoedoardo poissongeneralizedlinearmodelapplicationtodisentangletheeffectsofvariousparametersonneurophysiologicaldischarges
AT diomedistefano poissongeneralizedlinearmodelapplicationtodisentangletheeffectsofvariousparametersonneurophysiologicaldischarges
AT filippinimatteo poissongeneralizedlinearmodelapplicationtodisentangletheeffectsofvariousparametersonneurophysiologicaldischarges
AT galletticlaudio poissongeneralizedlinearmodelapplicationtodisentangletheeffectsofvariousparametersonneurophysiologicaldischarges
AT fattoripatrizia poissongeneralizedlinearmodelapplicationtodisentangletheeffectsofvariousparametersonneurophysiologicaldischarges