Cargando…
Strong convergence rate of truncated Euler-Maruyama method for stochastic differential delay equations with Poisson jumps
We study a class of super-linear stochastic differential delay equations with Poisson jumps (SDDEwPJs). The convergence and rate of the convergence of the truncated Euler-Maruyama numerical solutions to SDDEwPJs are investigated under the generalized Khasminskii-type condition.
Autores principales: | Gao, Shuaibin, Hu, Junhao, Tan, Li, Yuan, Chenggui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Higher Education Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8042460/ https://www.ncbi.nlm.nih.gov/pubmed/33868393 http://dx.doi.org/10.1007/s11464-021-0914-9 |
Ejemplares similares
-
Convergence of the Euler–Maruyama method for multidimensional SDEs with discontinuous drift and degenerate diffusion coefficient
por: Leobacher, Gunther, et al.
Publicado: (2017) -
Stabilities for Nonisentropic Euler-Poisson Equations
por: Cheung, Ka Luen, et al.
Publicado: (2015) -
Convergence and stability of the exponential Euler method for semi-linear stochastic delay differential equations
por: Zhang, Ling
Publicado: (2017) -
Blowup Phenomena for the Compressible Euler and Euler-Poisson Equations with Initial Functional Conditions
por: Wong, Sen, et al.
Publicado: (2014) -
Explicit and approximate solutions of the Euler-Poisson-Darboux equation with an operator coefficient in Hilbert space
por: Gavrilyuk, I P, et al.
Publicado: (1995)