Cargando…
scConsensus: combining supervised and unsupervised clustering for cell type identification in single-cell RNA sequencing data
BACKGROUND: Clustering is a crucial step in the analysis of single-cell data. Clusters identified in an unsupervised manner are typically annotated to cell types based on differentially expressed genes. In contrast, supervised methods use a reference panel of labelled transcriptomes to guide both cl...
Autores principales: | Ranjan, Bobby, Schmidt, Florian, Sun, Wenjie, Park, Jinyu, Honardoost, Mohammad Amin, Tan, Joanna, Arul Rayan, Nirmala, Prabhakar, Shyam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8042883/ https://www.ncbi.nlm.nih.gov/pubmed/33845760 http://dx.doi.org/10.1186/s12859-021-04028-4 |
Ejemplares similares
-
RCA2: a scalable supervised clustering algorithm that reduces batch effects in scRNA-seq data
por: Schmidt, Florian, et al.
Publicado: (2021) -
DUBStepR is a scalable correlation-based feature selection method for accurately clustering single-cell data
por: Ranjan, Bobby, et al.
Publicado: (2021) -
Semi-supervised consensus clustering for gene expression data analysis
por: Wang, Yunli, et al.
Publicado: (2014) -
Noncoding origins of anthropoid traits and a new null model of transposon functionalization
por: del Rosario, Ricardo C.H., et al.
Publicado: (2014) -
An unsupervised image segmentation algorithm for coronary angiography
por: Yin, Zong-Xian, et al.
Publicado: (2022)