Cargando…

Correlation between two-dimensional micro-CT and histomorphometry for assessment of the implant osseointegration in rabbit tibia model

BACKGROUND: Histology is considered as a gold standard for analyzing bone architecture. However, histomorphometry is a destructive method and only offers the bone information of a limited location. Micro-computed tomography (μCT) is a non-destructive technology and provides a slice at any site. The...

Descripción completa

Detalles Bibliográficos
Autores principales: Lyu, Hao-Zhen, Lee, Jae Hyup
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8042957/
https://www.ncbi.nlm.nih.gov/pubmed/33849652
http://dx.doi.org/10.1186/s40824-021-00213-x
Descripción
Sumario:BACKGROUND: Histology is considered as a gold standard for analyzing bone architecture. However, histomorphometry is a destructive method and only offers the bone information of a limited location. Micro-computed tomography (μCT) is a non-destructive technology and provides a slice at any site. The aim of this study was to compare the correlation of the Bone-to-Implant Contact ratio (BIC) between 2D micro-CT (μCT) and histomorphometry and to investigate a method for assessing the osseointegration of the implant by 2D μCT. METHODS: A total of 18 implants were divided into three groups (6 implants per group), and inserted into the rabbit tibia defects as follow: implant only (Implant group), implant with β-TCP/hydrogel (TCP group), implant with rhBMP-2 loaded β-TCP/hydrogel composite (BMP-2 group). After 4 weeks of implantation, the specimens were collected to take the micro-CT scan with an aluminum filter and performed H&E staining on the undecalcified sections. The 2D μCT slices were chosen at an angle of 0°, 45°, 90° and 135° with the representative histological section to measure BIC. And the correlations between BICs of 2D μCT and BICs of histology were evaluated. RESULTS: In each group, BICs at the same sites measured by histomorphometry and corresponding 2D μCT presented the same trend and shown no significant difference between the two methods (P > 0.05). BICs of histological sections and BICs of corresponding 2D μCT slices presented a strong correlation in the implant group (γ = 0.74, P = 0.09), a moderate correlation in the TCP group (γ = 0.46, P = 0.35), a weak correlation in the BMP-2 group (γ = 0.30, P = 0.56). In the implant group, the relationship between BIC-Mean-μCTs and BICs-Histology has presented a significant linear correlation (γ = 0.84, P = 0.04). CONCLUSIONS: Integrating bone information of several 2D μCT slices in different sites to measure BIC is a feasible method for assessing the implant osseointegration.