Cargando…
Deep learning algorithms with mixed data for prediction of Length of Stay
Autor principal: | Falavigna, Greta |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8043423/ https://www.ncbi.nlm.nih.gov/pubmed/33851300 http://dx.doi.org/10.1007/s11739-021-02736-6 |
Ejemplares similares
-
Influence of ventilatory strategies on outcomes and length of hospital stay: assist control and synchronized intermittent mandatory ventilation modes
por: Casali, Diego
Publicado: (2020) -
Influence of ventilatory strategies on outcomes and length of hospital stay: assist-control and synchronized intermittent mandatory ventilation modes
por: de Godoi, Thais Bruno, et al.
Publicado: (2020) -
A novel evidence-based predictor tool for hospitalization and length of stay: insights from COVID-19 patients in New York city
por: El Halabi, Maan, et al.
Publicado: (2022) -
Does the length of stay in hospital affect healthcare outcomes of patients without COVID-19 who were admitted during the pandemic? A retrospective monocentric study
por: Fluck, David, et al.
Publicado: (2022) -
Progress and prospects for artificial intelligence in clinical practice: learning from COVID-19
por: Ferrara, Pietro, et al.
Publicado: (2022)