Cargando…
A graph neural network framework for causal inference in brain networks
A central question in neuroscience is how self-organizing dynamic interactions in the brain emerge on their relatively static structural backbone. Due to the complexity of spatial and temporal dependencies between different brain areas, fully comprehending the interplay between structure and functio...
Autores principales: | Wein, S., Malloni, W. M., Tomé, A. M., Frank, S. M., Henze, G. -I., Wüst, S., Greenlee, M. W., Lang, E. W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8044149/ https://www.ncbi.nlm.nih.gov/pubmed/33850173 http://dx.doi.org/10.1038/s41598-021-87411-8 |
Ejemplares similares
-
Forecasting brain activity based on models of spatiotemporal brain dynamics: A comparison of graph neural network architectures
por: Wein, S., et al.
Publicado: (2022) -
Investigation of an efficient multi-modal convolutional neural network for multiple sclerosis lesion detection
por: Raab, Florian, et al.
Publicado: (2023) -
Brain Connectivity Studies on Structure-Function Relationships: A Short Survey with an Emphasis on Machine Learning
por: Wein, Simon, et al.
Publicado: (2021) -
Lack of orientation specific adaptation to vertically oriented Glass patterns in human visual cortex: an fMRI adaptation investigation
por: Pavan, Andrea, et al.
Publicado: (2023) -
Graph Neural Network(GNN) Inference of FPGA
por: Fuad, Kazi Ahmed Asif
Publicado: (2019)