Cargando…
A review and comparison of breast tumor cell nuclei segmentation performances using deep convolutional neural networks
Breast cancer is currently the second most common cause of cancer-related death in women. Presently, the clinical benchmark in cancer diagnosis is tissue biopsy examination. However, the manual process of histopathological analysis is laborious, time-consuming, and limited by the quality of the spec...
Autores principales: | Lagree, Andrew, Mohebpour, Majidreza, Meti, Nicholas, Saednia, Khadijeh, Lu, Fang-I., Slodkowska, Elzbieta, Gandhi, Sonal, Rakovitch, Eileen, Shenfield, Alex, Sadeghi-Naini, Ali, Tran, William T. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8044238/ https://www.ncbi.nlm.nih.gov/pubmed/33850222 http://dx.doi.org/10.1038/s41598-021-87496-1 |
Ejemplares similares
-
Assessment of Digital Pathology Imaging Biomarkers Associated with Breast Cancer Histologic Grade
por: Lagree, Andrew, et al.
Publicado: (2021) -
Predicting Patterns of Distant Metastasis in Breast Cancer Patients following Local Regional Therapy Using Machine Learning
por: Shiner, Audrey, et al.
Publicado: (2023) -
Quantitative digital histopathology and machine learning to predict pathological complete response to chemotherapy in breast cancer patients using pre-treatment tumor biopsies
por: Saednia, Khadijeh, et al.
Publicado: (2022) -
Response monitoring of breast cancer patients receiving neoadjuvant chemotherapy using quantitative ultrasound, texture, and molecular features
por: Sannachi, Lakshmanan, et al.
Publicado: (2018) -
Chemotherapy-Response Monitoring of Breast Cancer Patients Using Quantitative Ultrasound-Based Intra-Tumour Heterogeneities
por: Sadeghi-Naini, Ali, et al.
Publicado: (2017)