Cargando…

Assessing the Impact of Precision Parameter Prior in Bayesian Non-parametric Growth Curve Modeling

Bayesian non-parametric (BNP) modeling has been developed and proven to be a powerful tool to analyze messy data with complex structures. Despite the increasing popularity of BNP modeling, it also faces challenges. One challenge is the estimation of the precision parameter in the Dirichlet process m...

Descripción completa

Detalles Bibliográficos
Autores principales: Tong, Xin, Ke, Zijun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8044365/
https://www.ncbi.nlm.nih.gov/pubmed/33868090
http://dx.doi.org/10.3389/fpsyg.2021.624588
_version_ 1783678468134797312
author Tong, Xin
Ke, Zijun
author_facet Tong, Xin
Ke, Zijun
author_sort Tong, Xin
collection PubMed
description Bayesian non-parametric (BNP) modeling has been developed and proven to be a powerful tool to analyze messy data with complex structures. Despite the increasing popularity of BNP modeling, it also faces challenges. One challenge is the estimation of the precision parameter in the Dirichlet process mixtures. In this study, we focus on a BNP growth curve model and investigate how non-informative prior, weakly informative prior, accurate informative prior, and inaccurate informative prior affect the model convergence, parameter estimation, and computation time. A simulation study has been conducted. We conclude that the non-informative prior for the precision parameter is less preferred because it yields a much lower convergence rate, and growth curve parameter estimates are not sensitive to informative priors.
format Online
Article
Text
id pubmed-8044365
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-80443652021-04-15 Assessing the Impact of Precision Parameter Prior in Bayesian Non-parametric Growth Curve Modeling Tong, Xin Ke, Zijun Front Psychol Psychology Bayesian non-parametric (BNP) modeling has been developed and proven to be a powerful tool to analyze messy data with complex structures. Despite the increasing popularity of BNP modeling, it also faces challenges. One challenge is the estimation of the precision parameter in the Dirichlet process mixtures. In this study, we focus on a BNP growth curve model and investigate how non-informative prior, weakly informative prior, accurate informative prior, and inaccurate informative prior affect the model convergence, parameter estimation, and computation time. A simulation study has been conducted. We conclude that the non-informative prior for the precision parameter is less preferred because it yields a much lower convergence rate, and growth curve parameter estimates are not sensitive to informative priors. Frontiers Media S.A. 2021-03-31 /pmc/articles/PMC8044365/ /pubmed/33868090 http://dx.doi.org/10.3389/fpsyg.2021.624588 Text en Copyright © 2021 Tong and Ke. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Psychology
Tong, Xin
Ke, Zijun
Assessing the Impact of Precision Parameter Prior in Bayesian Non-parametric Growth Curve Modeling
title Assessing the Impact of Precision Parameter Prior in Bayesian Non-parametric Growth Curve Modeling
title_full Assessing the Impact of Precision Parameter Prior in Bayesian Non-parametric Growth Curve Modeling
title_fullStr Assessing the Impact of Precision Parameter Prior in Bayesian Non-parametric Growth Curve Modeling
title_full_unstemmed Assessing the Impact of Precision Parameter Prior in Bayesian Non-parametric Growth Curve Modeling
title_short Assessing the Impact of Precision Parameter Prior in Bayesian Non-parametric Growth Curve Modeling
title_sort assessing the impact of precision parameter prior in bayesian non-parametric growth curve modeling
topic Psychology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8044365/
https://www.ncbi.nlm.nih.gov/pubmed/33868090
http://dx.doi.org/10.3389/fpsyg.2021.624588
work_keys_str_mv AT tongxin assessingtheimpactofprecisionparameterpriorinbayesiannonparametricgrowthcurvemodeling
AT kezijun assessingtheimpactofprecisionparameterpriorinbayesiannonparametricgrowthcurvemodeling