Cargando…
Assessing the Impact of Precision Parameter Prior in Bayesian Non-parametric Growth Curve Modeling
Bayesian non-parametric (BNP) modeling has been developed and proven to be a powerful tool to analyze messy data with complex structures. Despite the increasing popularity of BNP modeling, it also faces challenges. One challenge is the estimation of the precision parameter in the Dirichlet process m...
Autores principales: | Tong, Xin, Ke, Zijun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8044365/ https://www.ncbi.nlm.nih.gov/pubmed/33868090 http://dx.doi.org/10.3389/fpsyg.2021.624588 |
Ejemplares similares
-
A Bayesian non-parametric mixed-effects model of microbial growth curves
por: Tonner, Peter D., et al.
Publicado: (2020) -
BayesESS: A tool for quantifying the impact of parametric priors in Bayesian analysis
por: Song, Jaejoon, et al.
Publicado: (2023) -
Bayesian multi-QTL mapping for growth curve parameters
por: Heuven, Henri C M, et al.
Publicado: (2010) -
Specifying statistical models: from parametric to non-parametric, using Bayesian or non-Bayesian approaches
por: Florens, J, et al.
Publicado: (1983) -
An Improved Parameter-Estimating Method in Bayesian Networks Applied for Cognitive Diagnosis Assessment
por: Wang, Ling Ling, et al.
Publicado: (2021)