Cargando…

The effectiveness of three-dimensional reconstruction in the localization of multiple nodules in lung specimens: a prospective cohort study

BACKGROUND: The detection rate of multiple pulmonary nodules in computed tomography (CT) screening has increased significantly in recent years. In cases with multiple nodules within the same lung lobe or segment, it is often difficult for thoracic surgeons and pathologists to accurately locate all l...

Descripción completa

Detalles Bibliográficos
Autores principales: Ji, Ying, Zhang, Tao, Yang, Lin, Wang, Xin, Qi, Linlin, Tan, Fengwei, Daemen, Jean H. T., de Loos, Erik R., Qiu, Bin, Gao, Shugeng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: AME Publishing Company 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8044493/
https://www.ncbi.nlm.nih.gov/pubmed/33889523
http://dx.doi.org/10.21037/tlcr-21-202
Descripción
Sumario:BACKGROUND: The detection rate of multiple pulmonary nodules in computed tomography (CT) screening has increased significantly in recent years. In cases with multiple nodules within the same lung lobe or segment, it is often difficult for thoracic surgeons and pathologists to accurately locate all lesions in the surgically resected specimens. Therefore, the objective of our study was to use three-dimensional (3D) reconstruction in conjunction with 3D printing as an auxiliary method for localizing multiple small nodules in specimens after surgery and to evaluate its effectiveness. METHODS: A single-center prospective cohort study was conducted between September 2019 and September 2020 at the National Cancer Center (Beijing, China). In total, 43 surgical candidates with multiple nodules were recruited to undergo lobectomy or segmentectomy and 40 patients were ultimately enrolled in this study. With the assistance of 3D reconstruction/printing models, the obtained specimens were marked and then identified by a pathologist. The primary outcome was the success rate of nodule localization in the resected specimens, and the secondary outcome was the agreement rate between the pathological results of the samples and CT images. RESULTS: In the 40 patients enrolled, 126 nodules were detected by preoperative imaging, of which 124 nodules (positive rate: 98.4%) were successfully located in the resected specimens using 3D reconstruction/printing. For the 124 nodules, the agreement rate of the pathological results of samples and CT images with the assistance of 3D reconstruction/printing models was 100.0%. CONCLUSIONS: The results show that 3D reconstruction/printing models allow for the rapid and accurate localization of nodules in resected specimens. Also, the pathological results of lesions show good agreement with the results of preoperative CT imaging, which is of great significance for further study into the clinicopathological characteristics and radiomics of multiple pulmonary nodules.