Cargando…

The influence of combined low-strength ultrasonics and micro-aerobic pretreatment process on methane generation and sludge digestion: Lipase enzyme, microbial activation, and energy yield

Low-frequency ultrasonics is a potential technology to reduce the hydrolysis phase period in anaerobic digestion process. In this study, the influence of combined low frequency ultrasonics and micro-aerobic (MA) pretreatment on sewage sludge solubilization, enzyme activity and anaerobic digestion we...

Descripción completa

Detalles Bibliográficos
Autores principales: Rashvanlou, Reza Barati, Farzadkia, Mahdi, Rezaee, Abbas, Gholami, Mitra, Kermani, Majid, Pasalari, Hasan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8044681/
https://www.ncbi.nlm.nih.gov/pubmed/33799109
http://dx.doi.org/10.1016/j.ultsonch.2021.105531
Descripción
Sumario:Low-frequency ultrasonics is a potential technology to reduce the hydrolysis phase period in anaerobic digestion process. In this study, the influence of combined low frequency ultrasonics and micro-aerobic (MA) pretreatment on sewage sludge solubilization, enzyme activity and anaerobic digestion were assessed. Initially, the effect of ultrasonic density (0.012, 0.014, 0.016, 0.018, 0.1, 0.12 and 0.14 W/mL) and irradiation time (1, 3, 5, 8, 9, 10 and 12 min) of 20 kHz frequency waves were investigated. Accordingly, the effect of micro-aerobic pretreatment (Air flow rate (AFR) = 0.1, 0.2, 0.3 and 0.5 VVM) within 20, 30, 40.48 and 60 h were examined. In addition, the effect of combined pretreatment on COD solubilization, lipase enzyme activation, ATP, percentage of live bacteria and methane gas production during the anaerobic process were examined. The results showed that the highest lipase activity (14.9 Umol/mL) was obtained under the effect of ultrasonic density of 0.1 W/ml within 9 min. The highest solubilization (65%) was observed under optimal micro-aerobic conditions: AFR = 0.2 (VVM) and micro-aerobic time: 40 h. Combined ultrasonic and micro-aerobic (US + MA) pretreatment increases the solubilization (70%), microbial activity (2080%) and lipase enzymatic activity (129%) compared to individual pretreatment. The Biogas production during anaerobic digestion pretreated with combined methods increased by 193% compared to the control, while the elevated values of biogas production in reactors pretreated by ultrasonic and micro-aerobic pretreatment alone were observed to be 101% and 165%, respectively. The net energy in reactor with the combined pre-treatment methods was calculated to be 1.26 kWh, while this value for control, pretreated ultrasonic and micro-aerobic reactors were obtained to be 0.56, 0.67 and 1.2 kWh, respectively.