Cargando…
Learning From Others Without Sacrificing Privacy: Simulation Comparing Centralized and Federated Machine Learning on Mobile Health Data
BACKGROUND: The use of wearables facilitates data collection at a previously unobtainable scale, enabling the construction of complex predictive models with the potential to improve health. However, the highly personal nature of these data requires strong privacy protection against data breaches and...
Autores principales: | Liu, Jessica Chia, Goetz, Jack, Sen, Srijan, Tewari, Ambuj |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8044739/ https://www.ncbi.nlm.nih.gov/pubmed/33783362 http://dx.doi.org/10.2196/23728 |
Ejemplares similares
-
Exploring the Relationship Between Privacy and Utility in Mobile Health: Algorithm Development and Validation via Simulations of Federated Learning, Differential Privacy, and External Attacks
por: Shen, Alexander, et al.
Publicado: (2023) -
mHealth Systems Need a Privacy-by-Design Approach: Commentary on “Federated Machine Learning, Privacy-Enhancing Technologies, and Data Protection Laws in Medical Research: Scoping Review”
por: Tewari, Ambuj
Publicado: (2023) -
Federated Learning for Privacy-Aware Human Mobility Modeling
por: Ezequiel, Castro Elizondo Jose, et al.
Publicado: (2022) -
Splitting chemical structure data sets for federated privacy-preserving machine learning
por: Simm, Jaak, et al.
Publicado: (2021) -
Privacy-first health research with federated learning
por: Sadilek, Adam, et al.
Publicado: (2021)