Cargando…
Predicting HIV-1 Protease Cleavage Sites With Positive-Unlabeled Learning
Understanding the substrate specificity of HIV-1 protease plays an essential role in the prevention of HIV infection. A variety of computational models have thus been developed to predict substrate sites that are cleaved by HIV-1 protease, but most of them normally follow a supervised learning schem...
Autores principales: | Li, Zhenfeng, Hu, Lun, Tang, Zehai, Zhao, Cheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8044780/ https://www.ncbi.nlm.nih.gov/pubmed/33868387 http://dx.doi.org/10.3389/fgene.2021.658078 |
Ejemplares similares
-
Effectively predicting HIV-1 protease cleavage sites by using an ensemble learning approach
por: Hu, Lun, et al.
Publicado: (2022) -
Positive-Unlabeled Learning for Pupylation Sites Prediction
por: Jiang, Ming, et al.
Publicado: (2016) -
EPuL: An Enhanced Positive-Unlabeled Learning Algorithm for the Prediction of Pupylation Sites
por: Nan, Xuanguo, et al.
Publicado: (2017) -
Positive-unlabelled learning of glycosylation sites in the human proteome
por: Li, Fuyi, et al.
Publicado: (2019) -
Editorial: Unsupervised Learning Models for Unlabeled Genomic, Transcriptomic & Proteomic Data
por: Xi, Jianing, et al.
Publicado: (2021)